Perl In Secure Web Development

Jonathan Worthington (jonathan@jwcs.net)

August 31, 2005

Perl is used extensively today to build server side web applications. Us-
ing the vast array of modules on CPAN, one can easily put together web
applications that do a massive range of tasks. What is all too often neglected
is that the application is accessible to everyone on the internet, including
people who intend to make the application do things it decidedly was not
supposed to do.

1 About Security

Security is about protecting assets from a malicious and intelligent adver-
sary. An asset might be a customer or order database on an e-commerce site,
the posts in a personal guest book or messages that relate to an innovative
product a company is developing that are posted on a password-protected
message board system. The malicious adversary may be a competitor on an
espionage mission, a SPAMmer looking for yet another way to send their
junk emails without getting caught or a teenager who likes to show off by
defacing websites.

1.1 What is being protected?

After identifying the assets that need to be protected, the next question is
what about them needs protecting? Is it secrecy (protection against unau-
thorised viewing), integrity (protection against unauthorised modification)
or availability (protection against attacks that result in a denial of service)?

1.2 Security Is Relative

Even if a web application itself is perfectly secure (which is unlikely in large
systems), the web server software or the operating system may have security
holes that are yet to be discovered. Even if they don’t, there is still the
possibility of social engineering or mounting a physical attack on the system.
A system can be made more secure or less secure, but not perfectly secure.

1.3 The Economics Of Security

The bad news is that the odds are stacked against you from the start. You
need to find and close all of the security holes in your web application. Your
adversary only needs to find one of them (more specifically, one useful in
performing the kind of attack they desire).

The good news is that the adversary has limited resources, so a web
application can be “secure enough” by being hard enough to attack that the
adversary has expended their resources before they succeed. The resources
an adversary has will usually be related to the value of the asset. It is unlikely
anyone is going to spend an entire month trying to deface a personal guest
book (insufficient motivation resources). At the same time, it’s unlikely that
an adversary looking to steal a competitor’s customer database is going
to give up after 10 minutes if there is potentially a big financial benefit
available if the attack succeeds. The amount of effort put into protecting
assets accessible through a web application and the web application itself
depends on how much value it is perceived to have.

2 The Importance Of Validation

Validation involves checking that data given as input to the web application
contains what was expected and then appropriately handling the situation
when it does not. Lack of or insufficient validation is likely the single largest
cause of exploits in web applications.

2.1 What’s Allowed, Not What’s Denied

In general, code that validates data should check that the data contains
what is known to be valid rather than checking that it does not contain
what is known to be invalid. Checking the data contains what is known to
be valid is safe by default - the worst that can happen is that something
that should have been accepted is rejected. If the data is checked to ensure
it does not contain all the things known to be invalid, then there is a risk of
missing one of the invalid cases, which could lead to a security hole.

Good - we only accept valid phone numbers here.

if ($phone !~ /" [\d\s(O-1+$/) { error(); }

Bad - we try and protect against insertion of HTML tags to
avoid XSS attacks, but potentially miss other problems with
the data.

if ($phone =~ /<[>/) { error(); }

2.2 To Make It Safe Or To Abort?

The obvious and safe thing to do when data fails validation is to report this
back to the user and halt the script. In some cases, however, it may be more
desirable to correct the data so that it passes validation. For example, if the
data was detected to contain the “<” or “>” characters then it could be seen
as an attempt to carry out an XSS attack. If what was being validated was
the “message” field in the “Post New Message” script of a message board
system running on a mathematics site, the use of these characters is likely
legitimate.

Instead of complaining, these characters can simply be made safe by
replacing them with their HTML escape codes “<” and “>”. Also
known as escaping or sanitising, this is sometimes done automatically to all
data that enters the web application from the user.

2.3 A Note On Client Side Validation

Client side validation does little to protect web applications. It can be by-
passed by turning off client-side scripting if it is in the way of an attack.
Furthermore, it is dangerous to rely on any restrictions that a web browser
places on what data can be sent to a server side web application. By con-
structing a simple script, a request containing any data an adversary desires
can be formed and sent. Thinking about possible attack strategies involves
thinking outside of the web browser.

3 Some Common Attacks

While it would be impossible to list all of the attacks that might be at-
tempted against a web application, what follows are some of the most com-
mon types of attack and how to protect against them.

3.1 Injection Attacks
An injection attack take advantage of a lack of validation to change the
behaviour of a web application.

3.1.1 SQL Injection

Many web applications connect to a database and perform SQL queries on
it. A typical login script may contain a snippet of code like the one below.

my $sth = $dbh->prepare ("
SELECT userid, usertype
FROM users
WHERE 1login = ’$form{’login’}’ AND pass = ’$form{’pass’}’

")
$sth->execute;
if ($sth->rows == 0) {
Invalid login...give error message.
} else {
Valid login...fetch details, etc.

Imagine that $form{’pass’} is not validated and any arbitrary value
can be placed into it. It is possible to insert characters that are part of
the SQL syntax and change the behaviour of the query. For example, if
$form{’pass’} were to contain “> OR ’’ = ’” then the SQL query be-
comes the following:

SELECT userid, usertype
FROM users
WHERE 1login = ’$form{’login’}’ AND pass = ’’> OR ’’ = ??

The WHERE clause of this query will always evaluate to true (as an
empty string is always equal to an empty string) and therefore every row in
the users table is returned. In this event, most web applications will just
look for the one row they expected and assume that the correct login and
password were provided. Therefore the authentication mechanism can be
bypassed. Worse, this attack could be extended to allow an attacker to log
in as a particular user or user type without knowing the password.

A number of solutions exist. One is to sanitise all values, replacing every
> with \’. However, the \ itself has special meaning in SQL syntax and
it is possible to formulate an attack using the ability to insert arbitrary
backslashes while relying on the script to escape quotes. Thus \ should be
escaped to \\ and then the quotes escaped. Alternatively, each of these
could be escaped to HTML &#xx; style codes.

for (keys %form) {
$form{$_} =" s/\\/\\\\/g;
$form{$_} =" s/°/\\’/g;

A better solution for drivers that support it is to use place holders and
get the DBI to do the escaping, as demonstrated below.

Put question marks in place of variables we’d use.
my $sth = $dbh->prepare ("

SELECT userid, usertype

FROM users

WHERE 1login = ? AND pass = 7

Il);

Specify variables here, and DBI handles all escaping for us.
$sth->execute($form{’login’}, $form{’pass’});

Queries executed using the do method of a database handle need equal
care, or a delete one record query could become a delete the entire table
query. These can be re-written to use prepare and execute so place holders
can be used.

3.1.2 Path Injection

Sometimes data provided to the script is substituted into a file path.
open FILE, ‘< data/$form{’userid’}.dat’’;

If $form{’userid’} is not validated properly then the system could al-
low access to arbitrary files. Putting a ../ in a path allows the directory
tree to be traversed upwards; any file ending in “.dat” on the server that
the script has permissions to read (or write, if a write operation is being
performed) can be opened instead of the one the developer of the web ap-
plication intended.

If the file path contains no extension, then any file can be accessed. If
there is an unwanted extension, it is sometimes possible for an attacker to
pass in a NULL character (ASCII 0). This means that when the string is
passed to the operating system I/O functions, written in C or C++, then
anything beyond the NULL may not be seen.

The solution is to ensure anything that is placed into “open” statements
has been validated. Again, validating inclusively is best; it is safe by default,
whereas trying to catch attempts to do directory traversal is not and still
leaves the possibility of a shell injection attack.

3.1.3 Shell Injection

Shell injections are much like path injections apart from the data that has
not been validated is passed directly to the shell for evaluation. Any data
used in ‘backticks‘, system, exec and open that has not been validated
will almost certainly lead to an attack of this style being possible. It is
more serious than a path injection in that it directly enables arbitrary code
execution on the server hosting the web application.

For example, imagine a program contained the following code.

my $feedback = ‘python log_parser.py $logpath‘;

The variable $logpath could be set to “ blah ; rm -rf /* 7 with
obvious bad consequences. Other more subtle attacks could include instal-
lation of a trojan and emailing copies of the site source and/or other data
files to the attacker.

The open statement provides an even more subtle way for this kind of
attack to take place. As a contrived example, imagine the following program
was written.

Get path.

print "Enter path: ";
my $path = <>;

chop $path;

Display file.
open FILE, "$path";
print while <FILE>;
close FILE;

|77

If $path contains “rm *.pl then the pipe character on the end will
cause the script to execute what precedes it in the shell.

The solution, once again, is in properly validating incoming data. The
open example in particular shows how a lack of understanding of the seman-
tics of the implementation language can cause weak validation conditions to
lead to unforeseen security issues.

3.1.4 Mail Header Injection

A script vulnerable to a mail header injection attack is a SPAM senders
delight. Many scripts that directly use a sendmail program to send emails
have code like much like this:

open MAIL, "| /usr/sbin/sendmail -t"’;
print MAIL "To: $toaddr\n";

print MAIL "From: $fromaddr\n";

print MAIL "Subject: $subject\n\n";

Send body of email.

Generally scripts like this are pretty careful not to fall into the obvious
trap and validate $toaddr so that the script can not be abused and made
to send email to anyone. A more subtle attack is possible if $fromaddr or
$subject go unvalidated, however. Imagine that $subject can be given an
arbitrary value. An extra header could be inserted by making it contain a
line break, for example:

MAKE YOUR WIFE SCREAM WITH HUGE MORTGAGE PAYMENT ENLARGEMENTS
Bcc: lots@of.us get@th.is

This is particularly nasty as the recipient of emails sent to them through
the To address of the script have no indication that the junk email has been
sent to anyone besides them.

3.2 Cross Site Scripting (XSS)

XSS could be seen simply as Yet Another Injection Attack, but it is worth
separating this one out as the attack directly involves other users of the web
application.

The majority of web applications accept data from users and later display
that data on generated pages; in many cases the data is displayed to other
users of the web application. If the data the user provided contained HTML
tags then, unless proper validation and/or sanitisation takes place, these
will be placed into generated pages. This enables a malicious user to to
change the page layout (useful for defacement), present false data and insert
arbitrary client side scripts into the page. Doing the last of these is known
as an XSS attack.

If there is a JavaScript (or other client-side scripting language) vulnera-
bility then an insecure web application can be turned into a trojan distribu-
tion mechanism. A more commonly exploited feature of client side scripting
is that scripts have access to the cookies for the site that the script was
served from. These can be accessed and covertly sent to another server. If
the cookies contain authentication related data or other personal data about
a user then this could allow an adversary to pretend to be the user that was
authenticated, hijacking their session and performing operations as if they
were that user.

It may seem that escaping the < and > characters is enough. This is
a good start, but unfortunately it is insufficient. Imagine a link directory
accepts a URL from a user then inserts it into an anchor tag, for example
“$title”. If $url contained “javascript:some malicious code”
then when the link was clicked the malicious code would be executed. The
solution is to introduce validation that only allows valid URLs.

Finally, web applications should ensure that anything that is being placed
into a page inside quotes does not itself contain quotes. Otherwise insertion
of arbitrary attributes is possible, almost always allowing client side scripts
to be inserted. Validation is, once again, the key.

3.3 Attacks On Systems With Multiple Users

Frequently a web application has a set of objects associated with a particular
user that the user is allowed to manipulate but other users are not. For ex-
ample, a link directory may intend to allow users to only be able manipulate
links that they have added.

A common construction involves a page containing a list of the links that
the currently logged in user owns, with a link to edit each one. A query to
select the links may look like the one below.

SELECT id, title, url description
FROM 1listings
WHERE userid = $auth_user{’userid’}

A link to edit a listing will probably be generated as follows.
Edit

The edit listing script therefore receives a listing ID, fetches it and dis-
plays the current data in a form, allowing it to be edited. Once it has been
edited, the user submits the form and the data is saved. An incorrect, but
seemingly valid update query may look as follows.

UPDATE listings
SET title = ’$title’,

url = ’$url’,

description = ’description’
WHERE id = $listingid

The problem here is that, unless any other checks are done, any user can
edit and update any listing they desire as the edit listing script fails to check
that the listing is associated with the user attempting to update it before
the update is allowed.

The solution is to ensure that these checks are done. An experimental
security feature that has been implemented by the author was to write a
wrapper for the DBI that checks that when a query is done on one of a
given list of tables, a given field is involved in the WHERE clause. This
can, in development, catch a few mistakes of this kind.

3.4 Denial Of Service Attacks

Often the availability of an asset or of the web application as a whole is
important. Denial of service attacks attempt to make the application un-
available to other users by monopolising a limited resource. That resource
might be bandwidth, disk space, available memory or available processing
power.

Preventing denial of service attacks is something that needs to be consid-
ered throughout the application stack. What follows is just a small handful
of web application level issues that can enable or contribute towards denial
of service attacks.

e Failing to check the length of input data can lead to larger than ex-
pected resource consumption. For example, an image upload script
that fails to check the size of the uploaded images can be attacked by
uploading a number of gigabyte sized “images”. Also, when a large
amount of processing is done on data, the time taken will usually be
proportional to the quantity of data, so a number of much larger than
expected requests given simultaneously can affect the web application’s
responsiveness towards other requests.

e A related issue to input size is that the time or memory used by many
algorithms does not grow linearly with the size of the input. This
should influence the maximum allowed input size.

e Some algorithms have degenerate cases. For example, quicksort using
the first element as the pivot will have quadratic order rather than
the expected pseudo linear order for certain sets of data (for example,
where the data is already sorted or reverse sorted).

Conclusions

Clearly validation is at the heart of writing secure web applications. Perl
offers some help in providing taint mode, enabled by starting perl with the
-T flag. This marks any variables that have come from an untrusted source as
“tainted” and prevents them from being used in certain unsafe operations,
including open statements, backticks and system statements. Instead, a
pattern match has to be done against the tainted variable, then any captures
($1, $2, etc) will be untainted and can be used with unsafe operations. The
idea is to force the programmer to do some kind of validation, though it is
up to the programmer to use a regex that is not too liberal.

However, taint mode will not protect against all attack vectors. Of the
few attacks described in this paper it only really deals with path and shell
injection. There is still much work to do in addition to using taint mode in
order to develop more secure web applications.

The author of this paper has naively built web applications vulnerable
to many of the attacks described in this paper. Today he can only look back
in horror at some of his early work and know that, despite a large number of
changes to the way he develops web applications and security bug-hunting
efforts, there are inevitably still some vulnerabilities lurking in production
systems today. Though not a security expert, he has been able to greatly
improve the security of his web applications by having an awareness of some
of the potential issues, and writes this paper in hope of helping others do
the same.

