
Jonathan Worthington
University Of Cambridge

���������	
��
�������

�
�� �	����� �	����
	����

��



�� �	�	����

���	
��
������

Virtual Machines Rock

Virtual machines for high level 
languages hide away the details of the 
underlying hardware and OS, making 
deployment simpler. 



�� �	�	����

���	
��
������

Re-using code rocks too, but…

•We all use libraries rather than 
writing stuff from scratch.

•Libraries in native code just had to 
use a standard calling interface.

•In a world with multiple VMs, it is 
possible you’d want to use a library 
compiled to run on VM A from a 
program running on VM B.

•But VM A can’t understand VM B’s 
code. Argh! What to do?

Translation to the rescue!

•Translate code that runs on VM A 
to use VM Bs instruction set, etc.

•Wins support for all languages 
that compile to VM A.



�� �	�	����

���	
��
������

Designing the translator

The translator breaks down into a 
series of modules that execute one 
after the other, like a compiler.

.NET Bytecode File (.DLL or .EXE)

Instruction Translator

Parrot Intermediate Code

Parrot Intermediate Code Compiler

Metadata Translator

Data Structures (PMCs)

Parrot Bytecode



�� �	�	����

���	
��
������

Writing repetitive code is boring

•Code for translating diffferent 
instructions has a lot in common.

•Write translation rules to describe 
how to translate instructions.

•Then use a script to build the 
instruction translator from them.

[add]
code = 58
class = op
pop = 2
push = 1
instruction = ${DEST0} = ${STACK0} + ${STACK1}

Stack to register mapping

•.NET is a stack based VM, Parrot 
is register based. Many ways to 
handle this, from easy to hard.

•Pluggable mapping modules allow 
multiple solutions to be explored.



�� �	�	����

���	
��
������

Conclusions

•Bytecode translation still feels like 
a good idea.

•Regression testing is valuable.

•Generate repetitive code.

What can be translated so far?

•Arithmetic, logical, branching and 
comparison ops

•Integer, floating point and 
managed pointer types

•Instance and static fields, methods 
and constructors

•Instantiation, method calling, 
inheritance and interfaces

•Array related instructions


