Parallel New World

P - .
: -“‘ﬁ_—m'.ltm—n—‘-ﬁ il
S - . o e
= el - = -
S e — _— —— R p—
e o —— -

i TR -~

U T

o = iHh#F-‘-F; e
s

Jonathan Worthington
French Perl Workshop 2007

3.0 x10%° m/s

3.0 x10%° m/s

The fastest we can
move information

3.0 x 10° hz

3.0 x 10° hz

The number of cycles a
3GHz CPU does per second

10 cm

10 cm

The distance we can move data
per cycle.*

10 cm

The distance we can move data
per cycle.*

*If the CPLU were a vacuum.

10 cm

The distance we can move data
per cycle.*

*If the CPLU were a vacuum.
(By the way, it's not. ©)

Parallel New World

Current leakage
Capacitance effects
Quantum effects

Parallel New World

We can't just keep
clocking up the
cycles.

The Answer:
Go parallel.

O
o
Dﬂl
=
=
(T
=
v
©
e
©
a

Parallel New World

Task
Parallelism

Parallel New World

Task Parallelism
. [ake a range of different tasks
« RUn them In parallel
. Consider a game...
« Rendering beautiful graphics
«Doing Al for Intelligent opponents
. Can do these two tasks In parallel

« | asks will often need to communicate
somehow

Parallel New World

Data
Parallelism

Parallel New World

Data Parallelism

« Performing the same task on many
items

« For example, calling the same method
on every element of an array

oIf we know It Is safe, we can call the
method over the array in parallel

 Different execution units work on
different elements of the array

Parallel New World

Parallel New World

Parallel New World

Threads

A thread has Its own program counter
and stack

.Lives In the same memory space as
other threads In the process =>
communication by shared memory

« Usually, we create it and point it at a bit
of code to start executing

Parallel New World

Mutexes
« Short for Mutual Exclusion

«Only one thread can hold the lock at a
time
.If thread 1 has the mutex and thread 2

wants it, thread 2 must wait until thread
1 1s finished with It

« Easy to implement directly on top of
hardware primitives

Parallel New World

Semaphores
«An Integer value

. INnitialize it to the number of resources
avallable

P operation acquires a resource:

sub P(Ss) { wait until $s > 0 then $s—- 1}

.V releases It
sub V(8s) { Ss++ }

« Blame the Dutch for the naming. ©

Parallel New World

Parallel New World

Ways ITo
Screw It Up

Parallel New World

The Ten Thousand Threads Myth

o If | start ten thousand threads my
application will run about ten thousand
times as fast!!!”

Parallel New World

The Ten Thousand Threads Myth

o If | start ten thousand threads my
application will run about ten thousand
times as fast!!!"

. Well, sure, If...
« YOU've got 10,000 CPUs/cores...
«And no scheduling overhead...

«And virtually no inter-thread
communication.

Parallel New World

How many threads?

oIf your application is CPU-bound there
IS o point having more threads than
you have CPUs/cores.

. Having more...

« Means the scheduler has more work
so you get to run less code

« |INtroduces more contention on locks
with no gains

Parallel New World

Lack of concurrency control

. If two threads are accessing the same
bit of data, you need to control access
to It

Thread 1 Thread 2

Sacc a.debit (100) ; Stotal += Sacc a.bal
Sacc b.credit (100) ; Stotal += Sacc b.bal

Parallel New World

Lack of concurrency control

. If two threads are accessing the same
bit of data, you need to control access
to It

Thread 1 Thread 2

Sacc a.debit (100) ; Stotal += Sacc a.bal
Sacc b.credit (100) ; Stotal += Sacc b.bal

Parallel New World

Lack of concurrency control

. If two threads are accessing the same
bit of data, you need to control access
to It

Thread 1 Thread 2

Sacc a.debit (100) ; Stotal += Sacc a.bal
Sacc b.credit (100) ; Stotal += Sacc b.bal

Parallel New World

Lack of concurrency control

. If two threads are accessing the same
bit of data, you need to control access
to It

Thread 1 Thread 2

Sacc a.debit (100) ; Stotal += BSacc a.bal
Sacc b.credit (100) ; Stotal += Sacc b.bal

Parallel New World

Lack of concurrency control

. If two threads are accessing the same
bit of data, you need to control access
to It

Thread 1 Thread 2

Sacc a.debit (100) ; Stotal += BSacc a.bal
Sacc b.credit (100) ; Stotal += Sacc b.bal

Parallel New World

Lack of concurrency control

. If two threads are accessing the same
bit of data, you need to control access
to It

Thread 1 Thread 2
Sacc a.debit (100) ; Stotal += BSacc a.bal
Sacc b.credit (100) ; Stotal += Sacc b.bal

« Our program to get the balance across
the accounts gets the wrong answer,
because It sees an Iinconsistent state

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2

lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }

Parallel New World

Deadlock

« Deadlock occurs when you get circular
walting on a lock

Thread 1 Thread 2
lock Sacc a lock Sacc b {
lock $acc_b { lock $a-::-::_a {

} }
} }

. [Nread 1 requires lock A, Thread 2
requires lock B. Neither can proceed.

Parallel New World

Lock Granularity Issues
« YOU have a hash table data structure

« YOU can have a lock over the whole
data structure or a lock on every bucket
In the hash (the place where the data Is
stored)

« WWhich to do depends on the kind of
operations that will be performed most
often on the hash

Parallel New World

Lock Granularity Issues

oIf you have a single lock for the entire
hash...

» [ake one lock for any operation(s)

«Only one access to the hash can
proceed at a time

oIf you're mostly reading from the hash
or updating existing values, you lose
a lot of potential concurrency

Parallel New World

Lock Granularity Issues
.If you have a lock for every element...

« More concurrency on reads/updates

« A write may need to resize the hash
table => requires locking of every
bucket (a LOT of locking overhead)!

. Compound operations or iterating
over the hash needs many locks

. Can waste a lot of time juggling locks

Parallel New World

Parallel New World

Cache
Issues

Parallel New World

Why CPUs have caches

«A CPU cache stores copies of sections
of main memory

«Accessing main memory Is slow (on the
order of magnitude of 100s of CPU
cycles)

« YOU have to go off-chip

« DRAM read speeds haven't kept up
with CPU speed gains

Parallel New World

What A Cache Looks Like

. Contains a number of Cache Lines,
perhaps of length 128 bits (holds 4 32-

bit words), but it varies by CPU

«A cache line holds a copy of an area of
main memory

. VWhen the cache is full, have to choose
a line to evict; random but not last used
IS a common policy

Parallel New World

Reads And Writes With A Cache

« Reads are done through the cache; If
the data isn't in the cache, fetched from

main memory

« Write-through: when making a change,
you bypass the cache and write directly
to memory

« Write-back: you make changes to the
line In the cache, and when that line Is
evicted the data Is written to memory

Parallel New World

Cache Line States For One CPU

« With a single CPU, a cache line can be
In one of three states:

.Invalid, when it's not holding a copy
of any memory location

o Valid, when It holds a copy of a
memory location

« Dirty, when the data it holds has been
changed (update memory on eviction)

Parallel New World

SMP Architecture

. [he CPUs or cores are connected by a
shared bus

CPU 1 CPU 2 CPU3 CPU 4

« [Ney can all see each others memory
requests

. Note: SMP doesn't scale, as the more
CPUs you get the more contention you
get on the bus

Parallel New World

Caches And Multiple CPUs
« Reading data through the cache is fine

. Every CPU can have a copy of the
data In Its cache

« Multiple threads reading shared
memory Is fine

« Note that all CPUs can see what other
CPUs are reading

Parallel New World

Caches And Multiple CPUs
« Writes are more complex...

« We need other caches to toss their
coples of the data, as it is about to
become out of date

« We start by doing an exclusive read

« [his gives us the data

« All other CPUs see 1t and their
caches evict those cache lines

Parallel New World

Caches And Multiple CPUs
. | he Modified state

« When we modify data held in a cache
line, Its state changes to Modified

.If we see somebody else try to read a
memory address and we have It
cached and marked modified, we:

«Jam their read
« Write the modification to memory

Parallel New World

Consequences for application design

o If multiple threads are reading from and
writing to memory on the same cache
line, the cache line Is "pinging” between
the CPUs

. [herefore...
« Maximize thread local storage

« Minimize writes to memory shared
between threads

Parallel New World

Consequences for locking

+A lock Is just a bit of memory set to a
value saying whether the lock Is taken
or not (or maybe saying who holds the
lock, If anyone)

« Cache line for that memory location will
ping between CPUs too

« [herefore, taking locks is expensive In
terms of bus activity (and thus time)

Parallel New World

False Sharing
. YOU have four threads numbered 1 to 4

« YOU have an array with four elements,
all 32-bit words

. [hread 1 will read/write the first
element, thread 2 will read/write the
second element, etc.

« S50 We've got no sharing and we're nice
and efficient, right?

Parallel New World

False Sharing
+NOo. &

. Cache lines hold many words

« Our array may lie all on a single cache
line or at best be spread over two
cache lines

+At the program level, there is no
sharing of memory. At the hardware
level, there Is, due to cache line size.

Parallel New World

Summary of cache issues

o If you want to write concurrent
programs that perform well, you must
think about its cache characteristics

. Use as much thread-local storage as
possible

« Minimize lock taking (but larger locks
limit concurrency — difficult trade-off)

« Beware of false sharing

Parallel New World

Parallel New World

Parallelism

~ InPerl 6
. PG

Parallel New World

The Big Picture

« Syntax and detalls are yet to be
finalized, so anything | say may change

« Much more declarative than Perl 5

. \We say what we want and leave the
computer to work out how to make It
happen

« SUpport for both task based parallelism
and data based parallelism

Parallel New World

async blocks

[0 say that a block of code should be
executed asynchronously (e.g. In a
thread of its own), prefix the block with
async.

async |
Code in here runs in another thread

}

Code here is still in original thread

Parallel New World

async blocks

oIt returns a thread object, which we can

keep and use to control the thread if

needed.

my Sthread = async {
Code in here runs in another thread

}

Numifies to the thread ID.
say "The thread has ID " ~ +Sthread;

Can do the usual thread operations...
Sthread.join() ;

Parallel New World

Software Transactional Memory

A transaction is a sequence of
operations that are guaranteed to:

« Either complete In full or have no
effect on the system at all

 [ake place atomically

« S TM Implements very lightweight and
cache-sensitive transactions with these
characteristics

Parallel New World

How STM Works, Roughly
. \We don't take any locks

. Whenever we make a change to some
state (e.g. assign to a variable), we
don't change the original, but instead
note the change that took place

« Reads Inside our transaction see the
changes

« Reads outside of it don't see them

Parallel New World

How STM Works, Roughly

o If we have run all of the Iinstructions
successfully, we try to commit the
transaction

« Check none of the values that we
read or modified have changed

oIf none did, apply our changes

. Otherwise, run our transaction from
the start again, with updated values

Parallel New World

How STM Works, Roughly

oIf an error occurs Iinside of our
transaction. ..

« We didn't actually change anything,
Just noted our changes

« 50 JUst discard the transaction
Information, and it's as if we never
ran It

Parallel New World

STM in Perl 6

Write an atomi ¢ block to state that the
code Inside 1t Is to run as a transaction.

atomic {
Sacc _a.debit (100) ;
Sacc b.credit (100) ;

}

« Note that you can not do any /O inside
a transaction, as we can't roll that back;
trying to do so Is a fatal error.

Parallel New World

Advantages Of STM

« Declarative: frees the programmer from
worrying about locking issues

«A good implementation of STM will
result in little locking taking place under
the hood, making the application much
more scalable

« YOUr program always makes progress:
If a transaction fails at commit time, it's
because another one succeeded

Parallel New World

Data Parallelism

« Possible when we are performing the
same operation over all elements of an
aggregate, for example an array

. Perl 6 provides ways to perform a
range of operations over all elements of
an array:

Element-wise addition of two arrays
my [dc = (@a >>+<< (@b;

Call a method on every element
@dogs>>.wag tail();

Parallel New World

Data Parallelism

. \When you use the hyper, cross or
reduction operators, it's not just cool
syntax

« YOU are declaring that there are no
data dependencies between operations
on elements of the array

« From this, the compiler can infer that it
IS safe to parallelize the operations

Parallel New World

Data Parallelism

« YOU WIll probably use a pragma to
Indicate that you want such operations
to be parallelized.

use Parallel::Hypers; # I made this up :-)

« [hese pragmas will almost certainly be
written as modules — probably in Perl

. Powerfully allows us to separate
concerns — how to parallelize an
operation from the operation itself

Parallel New World

Research And
Future ldeas

Parallel New World

Concurrency Annotations

«Another idea being worked on Is
annotating variables with what kind of
concurrency control they require

my mutex Sfoo; # Mutex
my mrsw Sbar; # Multiple Reader Single
Writer lock
my Sbaz; # No locking required
« [hen the compiller Is responsible for
enforcing these locking regimes on

accesses to the variables

Parallel New World

Lock Free Data Structures

. \We have seen that taking locks limits
performance and scalability

« VWhat If we could build data structures
that. ..

« Allowed concurrent operation
«Don't require taking of locks

« Will still guarantee that we don't end
up with an inconsistent state

Parallel New World

Atomic Compare And Swap

« Many CPUs provide a CAS (Atomic
Compare And Swap) operation

seen = CAS (addr, expected, replacement)

.addr is a memory address
.expected is what it should contain

.replacement is what we store there
If It contains the expected value

« Seen Is the value that was there

Parallel New World

Using CAS

« CAS Is the primitive concurrency
operation upon which we can build all
others (the theorists proved It)

. For example, a bad implementation of a

mutex using CAS Is:

sub take {
while (CAS(Smutex, 0, 1) '= 0) { }
}

sub release {
CAS (Smutex, 1, 0) || die "WTF?!";
}

Parallel New World

Making Any Data Structure Lock Free

.If you add a level of indirection, you end
up with a memory location containing a
pointer (reference) to the data structure

« YOU make a copy of the data structure
at that pointer

« YOU modify the copy

. YOU then try and use CAS to swap the
original pointer with that of your copy

Parallel New World

Making Any Data Structure Lock Free

o [Nis has the (good) property that If your
change falls to be made, It's because
another thread made one => program
made progress ©

« For certain data structures, you can do
MUCH more efficient things built on top
of CAS.

.It's really hard to get right => need
smart people to write libraries of these

Parallel New World

The End

Parallel New World

Questions?

Parallel New World

Merci!

