
Secure Web

Development In Perl

Jonathan Worthington
French Perl Workshop 2007

Overview
We'll look at both the theory and practice of
security in web applications.

•The Academic Bit

•Security analysis

•The economics of security

•The Practical Bit

•A range of common exploits

•How to protect against them

Secure Web Development In Perl

Secure Web Development In Perl

Security
Analysis

What is security?
Security is about protecting assets from a
malicious and intelligent adversary.

•Examples of assets: a customer
database, corporate secrets or internal
data, posts in the guest book of a personal
site.

•Examples of adversaries: a malicious
competitor, a SPAMmer, an angsty
teenager who thinks their skillz are 1337.

Secure Web Development In Perl

What is being protected?
After identifying assets, identify what it is
about them that needs protecting.

•Secrecy: protection against unauthorised
access, viewing, copying, etc.

•Integrity: Protection against unauthorised
modification and deletion.

•Availability: Protection against attacks
that render the asset unusable.

Secure Web Development In Perl

Security is relative
Even if your web
application were to be
perfectly secure...

•The web server might
have security holes

•The database server
might be insecurely
configured

•The OS might have
security holes

Secure Web Development In Perl

Security is relative
And even if that's all perfectly secure, you've
still social engineering to worry about.

•One stupid person can render millions of
dollars worth of security software pointless

•One study found a scary number of people
would reveal their password for chocolate!

•If that doesn't work, try money, identity
theft, intimidation, sex…

•People are weak. Or stupid. Or both. :-)

Secure Web Development In Perl

Security is relative
Then there's the whole issue of physical
security…

•If you have physical access to a machine,
you’ve a lot more possibilities.

•Social engineering is one path to physical
access.

•Just how secure is the datacenter where
your servers are really? There was a story
of a break-in at one in the news just last
week.

Secure Web Development In Perl

Secure Web Development In Perl

The Economics
Of Security

The Economics Of Security
The bad news: The odds are stacked
against you.

•You have to find every security hole in the
system and deal with it.

•An attacker need only find one that is
suitable for the kind of attack they want to
mount.

Secure Web Development In Perl

The Economics Of Security
The good news: The attacker has limited
resources.

A system could be
considered “secure
enough” if an
attacker is likely to
spend all of
their resources before they succeed in
compromising your system.

Secure Web Development In Perl

The Economics Of Security
The resources an attacker has are usually
related to the value of the asset that is being
protected.

•It is unlikely anyone is going to spend an
entire month trying to deface the guest
book on your personal home page.

•It is also unlikely that an attacker looking
to steal a competitor's customer database
is going to give up after 10 minutes.

Secure Web Development In Perl

Secure Web Development In Perl

Solutions To
Web Security

Problems

The Practical Bit
Usually I present a problem, then its solution.
However, we’re going to look at a solution
first, then some attack vectors, because…

•The vast majority of security issues I’m
about to present have the same solution.

•The solution sounds boring, so I’ll present
it while everyone is still awake. :-)

Secure Web Development In Perl

Validation
Validation involves…

•Checking that data given as input to the
web application contains what was
expected.

•Appropriately handling the situation when
it does not.

Lack of or insufficient validation is likely
the single largest cause of exploits in web
applications.

Secure Web Development In Perl

Doing Validation Right
Normally you should be doing positive
validation.

•Check that the data contains what is
expected, rather than checking if it
contains things that could be dangerous.

•That way, the worst case is that something
that should have been accepted is rejected.

•With negative validation, it is easy to miss
something potentially dangerous.

Secure Web Development In Perl

Doing Validation Right
Example: positive vs. negative validation

Good - we only accept $phone if it contains things

that are valid in a phone number.

if ($phone !~ /^[\d\s()-]+$/) {

error();

}

Bad - we try and protect against insertion of HTML

tags to avoid XSS attacks, but potentially miss

other problems with the data.

if ($phone =~ /<|>/) {

error();

}

Secure Web Development In Perl

The Perl Angle On Validation
Perl makes validation quick and easy.

•For hand-made validation code, regular
expressions are very useful, and more
convenient to use in Perl than in many
other languages.

•There are some useful CPAN Modules:

•HTML::FormValidator

•Data::Validate

•…

Secure Web Development In Perl

The Perl Angle On Validation
Perl can also run in taint mode.

•Here, all data from outside the program is
considered tainted. Copying data from a
tainted variables will taint the destination.

•You have to validate, using a regex, to
untaint a variable.

•Using a tainted variable in unsafe
operations is an error.

Secure Web Development In Perl

Sanitizing Input
This involves making user input safe when it
would otherwise fail validation.

•On a message board discussing maths,
the < and > characters may be used
frequently.

•However, we shouldn't just output them
directly as they can mess up page layout or
allow for a XSS attack (more on XSS
attacks coming later).

Secure Web Development In Perl

Sanitizing Input
We transform dangerous input into something
safe.

•In this case, we can turn all < into < and all
> into > to make the input safe.
$input =~ s/</</g;

$input =~ s/>/>/g;

•This can be done on all form data to make
user input safer “by default”.

•Sanitization doesn’t imply no validation
needed.

Secure Web Development In Perl

Thinking Outside The Browser
Client side validation is of little help when it
comes to server side security.

•JavaScript can be turned off easily.

•Custom requests can be assembled,
bypassing any browser constraints.

•For example, even if the browser shows a
single line text entry field, a custom request
could contain line breaks.

Secure Web Development In Perl

Secure Web Development In Perl

Exploits

The Exploits
The following slides present some of the most
common exploits that web applications are
vulnerable to.

•This will not be anything close to a complete
list.

•Validation will come up as The Solution™
again and again.

Secure Web Development In Perl

Injection Attacks
An injection attack takes advantage of a lack of
validation to change the behaviour of a web
application.

•Usually these attacks take advantage of
certain characters having special meanings.

•For example, the new line character has
special meaning in a mail header – it denotes
that another header follows.

Secure Web Development In Perl

SQL Injection Attacks

Many web applications use an SQL database
for data storage.

•SQL is a language, and like any other
language certain characters have special
meanings.

•Not sanitizing or validating input that is
placed into an SQL query potentially enables
an attacker to change the meaning of a
query.

Secure Web Development In Perl

SQL Injection Attacks
Imagine $form{‘pass’} is not validated or
sanitized and is used as follows.
my $sth = $dbh->prepare(“

SELECT userid, usertype

FROM users

WHERE login = '$form{'login'}‘

AND pass = '$form{'pass'}‘

");

$sth->execute;

if ($sth->rows == 0) {

Invalid login...give error message.

} else {

Valid login...fetch details, etc.

}

Secure Web Development In Perl

SQL Injection Attacks
What happens if the user was to enter the
following value for $form{‘pass’}?

' OR '' = '

Secure Web Development In Perl

SQL Injection Attacks
The SQL query will look like this:

SELECT userid, usertype

FROM users

WHERE login = '$form{'login'}‘

AND pass = '' OR '' = '‘

•The WHERE clause will always evaluate to
true!

•You will log in as the first user in the table.

•In multi-user systems, how often is the first
account in the table an administrative one?

Secure Web Development In Perl

Preventing SQL Injection Attacks
One solution is to sanitize the data with a
couple of simple substitutions.

•Obviously, need to sanitize the quote
character, either to a HTML &#xx; style
sequence or by putting a \ before it.

•Escaping with a backslash alone is not
enough, however!

•Also need to sanitize the backslash,
otherwise quotes can be escaped as the
attacker wishes.

Secure Web Development In Perl

Preventing SQL Injection Attacks
The best solution for database drivers that
support it is to use placeholders. This way, we
pass the buck to the DBI to do the sanitizing.
Put question marks in place of variables we want

to substitute in.

my $sth = $dbh->prepare(“

SELECT userid, usertype

FROM users

WHERE login = ? AND pass = ?

");

Specify variables here, and DBI handles all escaping

for us.

$sth->execute($form{'login'}, $form{'pass'});

Secure Web Development In Perl

Preventing SQL Injection Attacks
I’ve only presented examples of using the
prepare/execute/fetch/finish method of doing
SQL queries.

•$dbh->do(…) style queries present an equal
risk; that “delete one thing” could easily be
turned into a “delete everything”.

•To use place holders, these need to be re-
written as a prepare/execute/finish sequence.

Secure Web Development In Perl

Path Injection Attacks
Sometimes user supplied data is used to
generate a file path.

open FILE, ``< data/$form{'userid'}.dat'';

•Substituting unvalidated data into a path
may enable the attacker to modify the path
and/or the filename to one of their choice.

•Using “../”, the attacker can move up the
directory tree.

Secure Web Development In Perl

Path Injection Attacks – NULL Tricks
The file extension can really get in an attackers
way if they wish to overwrite a file with a
different one.

•If the path gets
passed to a C
routine, then
putting a null
character (code
0) in gives the
attacker the ability to snip off the extension.

Secure Web Development In Perl

Preventing Path Injection Attacks
Validate everything that is to be substituted into
a path or filename.

•Obviously, never let any slashes (forward or
backward – remember Win32 and *NIX)
through.

•And remember the NULL issue.

•This shows why positive validation is a Good
Thing™ - will eliminate these 2 cases “by
default”.

Secure Web Development In Perl

Shell Injection Attacks
Shell injections are much like path injections
apart from the data that has not been validated
is passed directly to the shell for evaluation.

•In Perl, this can happen with anything placed
between backticks and passed to the
functions system(…), exec(…) and open(…).

•Very dangerous - enables direct arbitrary
code execution.

Secure Web Development In Perl

Shell Injection Attacks
Imagine if the following line was executed and
$logpath was unvalidated.

my $feedback = `python log_parser.py $logpath`;

•Obvious potential damage; what if $logpath
contained “blah ; rm -rf /*”?

•More subtle attacks could include installation
of a trojan and emailing copies of the site
source and/or other data files to the attacker.

Secure Web Development In Perl

Shell Injection Attacks
The Perl open statement provides a sneaky
way to do a shell injection attack.

Get path.

print "Enter path: ";

my $path = <>;

chop $path;

Display file.

open FILE, "$path";

print while <FILE>;

close FILE;

Secure Web Development In Perl

Shell Injection Attacks
What happens if the user enters “rm *.pl |”?

•The pipe character has special meaning in
an open statement.

•The pipe at the end means “execute this
command and read the input it gives”.

•The command is executed at the shell!

•Once again, validation is the answer.

Secure Web Development In Perl

Mail Header Injection Attacks
SPAM is suckful. So are some form mail scripts.
Here’s a typical snippet of mail sending code.

open MAIL, "| /usr/sbin/sendmail -t"';

print MAIL "To: $toaddr\n";

print MAIL "From: $fromaddr\n";

print MAIL "Subject: $subject\n\n";

Send body of email.

Thankfully, today almost all scripts do not allow
an arbitrary value to be in $toaddr. But how
many scripts bother to validate $subject?

Secure Web Development In Perl

Mail Header Injection Attacks
Imagine that $subject can be given an arbitrary
value.

•An extra header could be inserted by making
$subject contain a line break, for example:

EVERY WOMAN LIKES A MAN WITH A BIG MORTGAGE!

Bcc: lots@of.us get@th.is

•Later headers can be curtailed by inserting a
double line-break, allowing control over the
message body too!

Secure Web Development In Perl

Mail Header Injection Attacks
The attack has sent the message to additional
email addresses.
To: some@address.com

From: another@address.com

Subject: EVERY WOMAN LIKES MAN WITH A BIG MORTGAGE!

Bcc: lots@of.us get@th.is

Here comes the body of the email

Worst of all, the owner of the script won’t know
their script has been exploited until somebody
reports the SPAM, as they don’t see what is in
the Bcc header.

Secure Web Development In Perl

XSS (Cross Site Scripting) Attacks
Sort of an injection attack, but directly involves
other users of the web application.

•Most web applications accept data from
users and later render this data to that user
and other users.

•If this data is not validated properly, it could
contain unwanted HTML tags, including
<script> tags.

•These could be sent to other users.

Secure Web Development In Perl

XSS (Cross Site Scripting) Attacks
Why is being able to to insert HTML or run a
script on other user’s computers useful for
malicious activity?

•Defacing sites, to damage reputation etc.

•Stealing cookies that relate to the site in
question, which may contain session data.

•If there is a browser vulnerability about, an
attack can be distributed by hijacking XSS
vulnerable sites.

Secure Web Development In Perl

XSS (Cross Site Scripting) Attacks
Sanitizing the < and > characters is a good
start, but not enough.

•Imagine a link directory that asks the user to
input a URL and a name for the link.

•If these were being pulled from a database,
the fetch and display loop could look like this:

while (my ($name, $url) = $sth->fetchrow_array()) {

print qq{$name};

}

Secure Web Development In Perl

XSS (Cross Site Scripting) Attacks
Imagine that $url was not validated to ensure it
really was a URL.

•It could contain “javascript:alert(‘Ha’)”, or
something quieter and more useful.

•Alternatively, it could contain something like
(including the quote): ” onClick=“alert(‘Ha!’)

•Either of these will allow for execution of
arbitrary JavaScript when the link is clicked.

Secure Web Development In Perl

Attacks On Multi-user Systems
Some web applications have a set of items
associated with a particular user that they are
allowed to manipulate, but other users are not.

•For example, a link directory may intend to
allow users to only manipulate links that they
have added.

•A bad assumption: if a user doesn’t have a
link to something, they can’t access it.

Secure Web Development In Perl

Attacks On Multi-user Systems
A common construction involves a page
containing a list of the links that the currently
logged in user owns, with a link to edit each
one.

A query to select the links may look like the one
below.

SELECT id, title, url description

FROM listings

WHERE userid = $auth_user{'userid'}

Secure Web Development In Perl

Attacks On Multi-user Systems
A link to edit a listing will probably be generated
for each link the user owns as follows:

Edit

The edit listing script therefore receives a listing
ID, fetches the name and URL associated with
the listing and displays the current data in a
form, allowing it to be edited.

So far, so good.

Secure Web Development In Perl

Attacks On Multi-user Systems
Once the data has been edited it needs to be
saved back to the database.

•The naïve update query looks like this:

UPDATE listings

SET title = '$title',

url = '$url',

description = 'description‘

WHERE id = $listingid

•Unfortunately, this allows any user who can
construct the appropriate HTTP request to
edit the listing.

Secure Web Development In Perl

Attacks On Multi-user Systems
The solution is to always check that the listing
belongs to the currently logged in user.

•Can do a separate query to explicitly do the
check.

•Alternatively, include the condition of the
listing being owned by the current user in the
WHERE part of the UPDATE query and
check the number of rows the query affected
was not zero.

Secure Web Development In Perl

Denial Of Service Attacks
Often the availability of an asset or of the web
application as a whole is important.

•Denial of service attacks attempt to make
the application unavailable to other users by
monopolising a limited resource.

•That resource might be bandwidth, disk
space, available memory or available
processing power.

Secure Web Development In Perl

Denial Of Service Attacks
Preventing DOS attacks needs work throughout
the entire web stack, not just at the web
application level. However, potential web
application level issues exist.

•Failing to check for over-sized of input can
lead to massive resource consumption.

•Large input sets of data will expose the
growth rate of more complex algorithms.

•Some algorithms have de-generate cases.

Secure Web Development In Perl

Secure Web Development In Perl

Conclusion

Insecure Web Applications Exist
How do I know?

•When I started out in web development,
some of my code was shockingly insecure.

•A number of popular web applications have
been found to contain instances of
vulnerabilities discussed in this talk.

•I’ve carried out attacks discussed in this talk
against other people's web applications,
successfully.

Secure Web Development In Perl

Conclusions
The main things to take away:

•Security is about protecting privacy, integrity
or availability of assets from a malicious
attacker.

•The effort expended to protect a system
should relate to the cost of it being exploited.

•Validation, validation, validation!

Secure Web Development In Perl

Secure Web Development In Perl

Questions?

Secure Web Development In Perl

Merci!

