Understanding Roles,
Constraints And Clas

¢ L ' -
~ ,.1,.‘

SES

AR A
\

Jonathan Worthington
Nordic Perl Workshop 2007

Understanding Roles, Constraints And Classes

The Perl 6 Object Model

The Perl 6 object model attempts to
Improve on the Perl 5 one

Nicer, more declarative syntax

One way to do things, rather than the
many that appeared in Perl 5 (but you
can still do other stuff if you like)

Roles — the Big New Thing
Before roles, something familiar...

Understanding Roles, Constraints And Classes

Classes

Understanding Roles, Constraints And Classes

What Are Classes Used For?
Instance Management

Classes “create” objects

Alternatively, you can view a class as
a kind of blueprint for how to create
an object

Classes define both the state and
behaviour that an object has, and
relate them

Understanding Roles, Constraints And Classes

What Are Classes Used For?
Code re-use

We often try to design classes to do
one particular thing

That means that, ideally, they can be
re-used to do that thing multiple
times, potentially in multiple programs

Understanding Roles, Constraints And Classes

What Are Classes Used For?
Providing a route to polymorphism
This means that the same code can
safely operate on values of different

types
Inheritance relationships state that
one class can be used in place of

another
Essentially, enables more re-use

Understanding Roles, Constraints And Classes

Classes In Perl 6

Introduce a class using the cl ass
keyword

With a block:
cl ass Puppy {

}

Or without to declare that the rest of

the file describes the class.
cl ass Puppy;,

et

Understanding Roles, Constraints And Classes

Attributes
Introduced using the has keyword

cl ass Puppy {
nas $nane;
nas $col our;
nas @aws;
nas $tail;

All attributes In Perl 6 are stored in an
opaque data type

Hidden to code outside of the class

Understanding Roles, Constraints And Classes

Accessor Methods

We want to allow outside access to
some of the attributes

Writing accessor methods Is boring!

$. means it is automatically generated

cl ass Puppy {

has $. nane;
has $. col our;
nas @aws;
has $tail;

Understanding Roles, Constraints And Classes

Mutator Methods

We should be able to change some of
the attributes

Use | s rwto generate a mutator
method too

cl ass Puppy {

nas $.nane 1s rw
nas $. col our;

nas @aws;

has $tail;

Understanding Roles, Constraints And Classes

Methods

The new net hod keyword is used to

Introduce a method

met hod bark() {
say “woOof!”;
}

Parameters go in a parameter list; the
Invocant Is optional!

met hod chew($item {
$i t em damage++;

}

Understanding Roles, Constraints And Classes

Attributes In Methods

Attributes can be accessed with the $.

syntax, via their accessor

nmet hod play in _garden() {
$.col our = 'black';

}
To get at the actual storage location,
$col our can be used

nmet hod play in _garden() {
$col our = ' bl ack';

}

Understanding Roles, Constraints And Classes

Attributes In Methods

If there 1s a conflict with a lexical

variable, you can use $! col our

nmet hod play in _garden() {
$! col our = 'Dbl ack':
}

This is because all (private) attributes
Inside the class really have the ! In their
name; can use It to emphasize
privateness.

has $!tail;

Understanding Roles, Constraints And Classes

Consuming A Class
A default new method Is generated for

you that sets attributes

Also note that - > has become .

nmy $puppy = Puppy. new

nane => ' Rosey',

colour => "white'
),
$puppy. bar k() ; # wOOf !
say $puppy. col our; # white
$puppy. pl ay i n_garden();
say $puppy. col our; # bl ack

Understanding Roles, Constraints And Classes

A Note On Instantiation

Another common way to write the
Instantiation code Is this

nmy Puppy $puppy .= new
nane => ' Rosey',
colour == "white’

The . = method means “call a method
on myself and assign the result to me”

$puppy is undefined, but we know its
class, so can call the new method

Understanding Roles, Constraints And Classes

Delegation

Sometimes, one of the attributes
contains a method that we want to
expose in the current class; we could

write a method like this:

met hod wag() {
$tail.wag();

}
Use delegation instead; modify the
declaration of $t ai |

has $tail handl es 'wag';

Understanding Roles, Constraints And Classes

Inheritance

A puppy Is really a dog, so we want to
Implement a Dog class and have Puppy
iInherit from it

Inheritance Is achieved using the 1 s

keyword
cl ass Dog {

}
cl ass Puppy is Dog {

}

Understanding Roles, Constraints And Classes

Multiple Inheritance

Multiple inheritance Is possible too; use
multiple 1 s statements
cl ass Puppy i1s Dog is Pet {

}

Understanding Roles, Constraints And Classes

Roles

Understanding Roles, Constraints And Classes

In Search Of Greater Re-use

In Perl 6, roles take on the task of re-
use, leaving classes to deal with
Instance management

We need to implement a wal k method
for our Dog class

However, we want to re-use that in the
Cat and Pony classes too

What are our options?

Understanding Roles, Constraints And Classes

The Java, C# Answer

There’s only single inheritance

You can write an interface, which

specifies that a class must implement a
wal k method

Write a separate class that implements
the wal k method

You can use delegation (hand coded)
Sucks

Understanding Roles, Constraints And Classes

The Multiple Inheritance Answer

Write a separate class that implements
the wal k method

Inherit from It to get the method
Feels wrong linguistically

“A dog Is a walk” — err, no

“A dog does walk” — what we want
Multiple inheritance has issues...

Understanding Roles, Constraints And Classes

Multiple Inheritance Issues
The diamond inheritance problem

Do we get two copies of A
A’s state? A U

If B and C both have a B C
wal k method, which do e

we choose?

Implementing multiple inheritance is
tricky too

Understanding Roles, Constraints And Classes

Mix-Ins
A mix-in is a group of one or more

methods than can not be instantiated
on their own

We take a class and “mix them in” to it

Essentially, these methods are added
to the methods of that class

Write a WAl k mixin with the wal k
method, mix 1t in.

Understanding Roles, Constraints And Classes

How Mix-ins Work
Defined in terms of single inheritance

C
~

M
V\
M

C with M; and M, mixed In Is,
essentially, an anonymous subclass

Understanding Roles, Constraints And Classes

Issues With Mix-Ins

If M, and M,, both have methods of the
same name, which one I1s chosen iIs
dependent on the order that we mix in

Fragile class hierarchies again

Further, mix-ins end up overriding a
method of that name in the class, so
you can’t decide which mix-in's method
to actually call in the class itself

Understanding Roles, Constraints And Classes

The Heart Of The Problem

The common theme in our problems is
the iInheritance mechanism

Need something else in addition
We want

To let the class be able to override
any methods coming from elsewhere

Explicit detection and resolution of
conflicting methods

Understanding Roles, Constraints And Classes

Flattening Composition
A role, like a mix-in, Is a group of
methods
If a class does a role, then it will have
the methods from that role, however:

If two roles provide the same method,
It’'s an error, unless the class provides
a method of that name

Class methods override role methods

Understanding Roles, Constraints And Classes

Creating Roles
Roles are declared using the r ol e

keyword

Methods declared just as In classes

role Wal k {
met hod wal k($num st eps) {
for 1..%num steps {
.step for @aws;

}

Understanding Roles, Constraints And Classes

Ccomposing Roles Into A Class

Roles are composed into a class using

the does keyword
cl ass Dog does \Wal k {

}
Can compose as many roles into a

class as you want
Conflict checking done at compile time

Works? Not quite...

Understanding Roles, Constraints And Classes

Ccomposing Roles Into A Class
Notice this line in the wal k method:

.step for @aws;

Can state that a role “shares” an

attribute with the class it Is composed
iInto using has without . or!

has @aws;

Note: to use this currently in Pugs, you

must use:
.step for @ paws;

Understanding Roles, Constraints And Classes

Additional Safety

We want to be sure that when we
compose our role, the items in @aws

will have the st ep method.

Assuming the Paw class has the st ep

method, we can add a type annotation
to the has declaration in both the role
and the class, stating that elements of
the array must be of the class Paw.

has Paw @aws;

Understanding Roles, Constraints And Classes

Parametric Polymorphism

Polymorphism = code can work with
values of different types

Parametric = a type takes a parameter;
we pass a type variable whenever we
use the type

What is the type of the invocant (self)
for a method in a role?

That of the class we compose it Into

Understanding Roles, Constraints And Classes

Parametric Polymorphism

The types of roles are therefore
parametric

They are parameterised on the type of
the class that we compose the role into

Compose Walk into class Dog, the
iInvocant has type Dog

Compose Walk into class Cat, the
iInvocant has type Cat

Understanding Roles, Constraints And Classes

Constraints

Understanding Roles, Constraints And Classes

Refinement Types
A type classifies a value

For example, 42 Is an integer

Therefore for each type there is a
(possibly infinite) set of values that
could be classified as that type

Constraints are refinement types
Take an existing type
Restrict the values in it further

Understanding Roles, Constraints And Classes

Evenint

An Evenint will be a refinement of the
Int type that can only hold even values

Declare it using the subset keyword

subset Evenlnt of |[nt
where { $n %2 == 0 };
Variables with the secondary sigil »

hold parameters that the block has

been passed; the lexicographically first
name gets the first parameter, etc.

Understanding Roles, Constraints And Classes

Making Walk More General

We may want to use the WAl k role for
humans too

Humans have feet, not paws

We'd like @aws to contain something
that has the st ep method, but in reality
it may contain Foot or Paw objects

Understanding Roles, Constraints And Classes

Making Walk More General
Define a refinement type that requires
the st ep method (Any = any type)
nmy subset WAl kabl e of Any
where { .can('step') };
Use this In the has declaration in the

class and the role
has Wl kabl e @aws;

Understanding Roles, Constraints And Classes

Finally...

Understanding Roles, Constraints And Classes

~ two months

ago, Arnhem In
Holland was
Invaded by...

Understanding Roles, Constraints And Classes

Parrot Hackers!

Understanding Roles, Constraints And Classes

Result: classes,
objects and
roles design
overhauled

Understanding Roles, Constraints And Classes

Overhauled

Actually capable
of supporting
Perl 6 now

Understanding Roles, Constraints And Classes

Taa-daal

Understanding Roles, Constraints And Classes

95%+ iImplemented

IN the latest Parrot
release, made

earlier this month

Understanding Roles, Constraints And Classes

For the first time,
Parrot supports
roles and
Introspection.

Understanding Roles, Constraints And Classes

The End

Understanding Roles, Constraints And Classes

Questions?

