The Perl 6
Languagg

Jonathan Worthington
UKUUG Spring 2007 Conference

The Perl 6 Language

Everyone loves Perl 5, because...
It's great for hacking up one-off scripts

Can write one-liners directly at the
command line

Really good at extracting data in a wide
range of formats...

...and spitting it out again in some other
form, or generating reports on it

Possible to build large systems too

The Perl 6 Language

Perl 6: the next step
A ground-up redesign of the language

A partial prototype interpreter Is
avallable to play with today

Aims to make the easy things even
easier, and the hard things less painful

Much stronger when it comes to
building large systems

But still the Perl we know and love

The Perl 6 Language

Overview

This talk: an introduction to writing
programs in Perl 6

The main message: Perl 6 rocks!

Tomorrow’s talk: what makes up Perl 6,
what to expect you'll be deploying,
migration issues, the future of CPAN

The main message: don’t panic!

The Perl 6 Language

Hello, world!

The Perl 6 Language

Hello, world!
In Perl 5:

print "Hello, world!l'\n";

Writing \n at the end of every print
statement Is very common

In Perl 6: the new say keyword saves

you from having to do that
say "Hello, world!";

An easy thing made easier

The Perl 6 Language

Variables

The Perl 6 Language

Variables

As In Perl 5, three container types:

Scal ars hold one val ue
ny $nanme = "Jonat han";

Arrays hold nany val ues
ny @ave_foods = "Curry", "Pizza", "Beef";

Hashes hol d many key/val ue pairs
nmy %opi nions = (

Perl => ‘Awesone’,

Vista => ‘ Suckful’,

Al e => ‘Tasty’

The Perl 6 Language

Variables

Unlike Perl 5, sigils are invariant

Arrays — al ways use @
say @ave foods[1l]; # Pizza
@ ave foods[3] = “Yorkshire Puddi ngs“;

Hashes — al ways use %

<...> for constant keys

say %opi ni ons<Al e>;, # Tasty

Yopi ni ons<Swi t zer |l and> = “Beauti ful “;

Curly brackets allow variables there too
ny $what = "Manchester";

Yopi ni ons{$what} = "Rai ny";

The Perl 6 Language

lteration

The Perl 6 Language

lterating Over An Array

Iteration = doing something for each
thing In the array

for @ave foods -> $food {
say "Jonathan |likes to eat $food";
}

The bit between the curly braces is
done for each thing in the array

- > $nane means “declare $name and
put the current thing into It”

The Perl 6 Language

lterating Over A Hash

Can iterate over all of the keys...

f or %opi ni ons. keys -> $what {
say “Jonat han has a vi ew on $what“;

}

Or all of the values with . val ues, or
both at the same time with . kv

Print environnent vari abl es
for % ENV. kv -> var, Sval ue {
say “$var = S$val ue";

}

The Perl 6 Language

lterating Over Many Arrays At Once

More generally, can iterate over two or
more arrays at a time

Use the z1 p function to interleave the
elements of two or move lists

for zip(@ds; @ogins; @roupids)
-> $id, $login, $groupid {
say "$login:x: $id:$groupid:...";

The Perl 6 Language

Conditionals

The Perl 6 Language

Save two keystrokes!

Fairly typical If...else style construct;
note no parentheses needed around

the condition

1 f $x == 42 {
say "ItCs the answer!";
} elsif $x == 7 {
say "ItGs perfect!”;
} else {
say "lIt©Cs sone ot her nunber.";

}

The Perl 6 Language

Junctions

Allow you to test a variable against
many conditions more easily

unl ess $input eg Y© | En®© | ©c© {
print "(y)es/(n)o/(c)ancel ? ";

}

The equivalent Perl 5 Is

unl ess ($i nput eq Cy© ||
$i nput eq ©nO | |
$i nput eq Cc© {

print "(y)es/(n)o)/(c)ancel ? ";

The Perl 6 Language

Junctions

You can build junctions from an array
too

ny @)ad_eXt = (@/bs©’ @ s© ©Cexe® Cr eg@) ,
I f Ic($file_ext) eq any(@ad_ext) ({
say "$file_ext files not allowed";

}
There are other types of junction
all & true for all elements
one N true for exactly one element

none true for no elements

The Perl 6 Language

Chained Comparisons

Now It's easier to check if a user input
IS sandwiched between two values

If O <= $score pc <= 100 {
say "You can©& score $score pc";

}

The Perl 6 Language

/0O

The Perl 6 Language

Reading Entire Files

Reading in an entire file Is now as

simple as
ny $file_content = slurp("filename.txt");

Or to get an array with an element for

each line in the file
my @ines = slurp("filenane.txt");

Reads the whole file in one go — very
handy, but be careful when dealing with
big files!

The Perl 6 Language

lterating Over Files Line By Line
Use open to get a file handle; use : r

to indicate we want to read
ny $th = open "file.txt" :r;

lterate over the file's lines using f or
for =$fh -> $line {

}

Close the file when you're done
$fh. cl ose();

The Perl 6 Language

Reading From STDIN
All global variables start with $*

The STDIN file handle is in $*I N

Iteration the same as on the last

slide...
for =$*IN -> $line

}

Can read a single line too
ny $i nput = =$*IN,

The Perl 6 Language

Powerful List
Processing

The Perl 6 Language

List Processing
Perl 6 has made some big advances
when It comes to doing operations
iInvolving lists (arrays) of data

Will make computing various statistics,
such as sums and averages, much
neater

In general, Implemented as meta-
operators: they add meaning to all
existing operators

The Perl 6 Language

Reduction Operators

To form the reduction operator,
surround any infix operator by | ..}

Add all elenents of the array
ny $sum = [+] @al ues;

Multiply together nunmbers from1l to $n
my $factorial n = [*] 1..%$n;

Check if the list Is sorted ascendi ng
1f [<=] @ist {

say "Sorted ascendi ng";
}

The Perl 6 Language

Hyper Operators

Used to perform an operation per
element of an array

n @ = @ >>+<< @;

This Is similar to a loop that takes
elements O from @ and @, adds them

and puts the result in element O of @

Gives permission for the operation on

different elements to be parallelized =>
good for the Concurrent Future

The Perl 6 Language

Cross Operators
Forms every possible permutation of

two or more lists
(1,2) X (3,4) # ((1,3),(1,4),(2,3),(2,4))

This Is a special case; can stick an
operator in-between two Xs

| f @ser facts contains words relating to
a user, can concatenate all possible

conbi nations of themtogether — test for
weak passwords. :-)

ny @uesses = @ser facts X~-X @ser facts;

The Perl 6 Language

Powerful
Text Parsing

The Perl 6 Language

From Regex To Rules And Grammars

Regex in Perl 5 are very powerful for
parsing

However, they are based on regular
languages

Makes parsing some things,
particularly anything recursive (e.g.
bracketed data) tricky

Some find the syntax a little arcane

The Perl 6 Language

Grammars

Grammars make defining how to parse
things easier

Encourages re-use

grammar ConfigFile {
t oken File { <Section>+ }
t oken Section { <Headi ng> <Entry>* }
token Heading { <& (\w) <€ & \n }
t oken Entry { (\w) <ws> = <ws>
(\w+) \n+

}

The Perl 6 Language

Final Thoughts

The Perl 6 Language

Play With Perl 6 Today!

In your web browser
http://run.pugscode.org/

Source code to Pugs (a partial Perl 6
compiler) is on the CD or get the latest
version from

http://www.pugscode.org/

Perl 6 FAQ at
http://programmersheaven.com/2/Perl6-FAQ

The Perl 6 Language

Conclusion

Perl 5 aims to make the easy things
easy and hard things possible

Perl 6 aims to make the easy things
easier and the hard things less painful

| think Perl 6 will be...

A little crazy!

The Perl 6 Language

Thank you!

The Perl 6 Language

Questions?

