
The Perl 6
Language

Jonathan Worthington
UKUUG Spring 2007 Conference

The Perl 6 Language

Everyone loves Perl 5, because…

� It's great for hacking up one-off scripts

� Can write one-liners directly at the
command line

� Really good at extracting data in a wide
range of formats…

� …and spitting it out again in some other
form, or generating reports on it

� Possible to build large systems too

The Perl 6 Language

Perl 6: the next step

� A ground-up redesign of the language

� A partial prototype interpreter is
available to play with today

� Aims to make the easy things even
easier, and the hard things less painful

� Much stronger when it comes to
building large systems

� But still the Perl we know and love

The Perl 6 Language

Overview

� This talk: an introduction to writing
programs in Perl 6

� The main message: Perl 6 rocks!

� Tomorrow’s talk: what makes up Perl 6,
what to expect you’ll be deploying,
migration issues, the future of CPAN

� The main message: don’t panic!

The Perl 6 Language

Hello, world!

The Perl 6 Language

Hello, world!

� In Perl 5:

� Writing \n at the end of every print
statement is very common

� In Perl 6: the new say keyword saves
you from having to do that

� An easy thing made easier

pr i nt " Hel l o, wor l d! \ n" ;

say " Hel l o, wor l d! " ;

The Perl 6 Language

Variables

The Perl 6 Language

Variables

� As in Perl 5, three container types:
Scal ar s hol d one val ue
my $name = " Jonat han" ;

Ar r ays hol d many val ues
my @f ave_f oods = " Cur r y" , " Pi zza" , " Beef " ;

Hashes hol d many key/ val ue pai r s
my %opi ni ons = (

Per l => ‘ Awesome’ ,
Vi st a => ‘ Suckf ul ’ ,
Al e => ‘ Tast y ’

) ;

The Perl 6 Language

Variables

� Unlike Perl 5, sigils are invariant
Ar r ays – al ways use @
say @f ave_f oods[1] ; # Pi zza
@f ave_f oods[3] = “ Yor kshi r e Puddi ngs“ ;

Hashes – al ways use %
<. . . > f or const ant keys
say %opi ni ons<Al e>; # Tast y
%opi ni ons<Swi t zer l and> = “ Beaut i f ul “ ;
Cur l y br acket s al l ow var i abl es t her e t oo
my $what = " Manchest er " ;
%opi ni ons{ $what } = " Rai ny" ;

The Perl 6 Language

Iteration

The Perl 6 Language

Iterating Over An Array

� Iteration = doing something for each
thing in the array

� The bit between the curly braces is
done for each thing in the array

� - > $name means “declare $name and
put the current thing into it”

f or @f ave_f oods - > $f ood {
say " Jonat han l i kes t o eat $f ood" ;

}

The Perl 6 Language

Iterating Over A Hash

� Can iterate over all of the keys…

� Or all of the values with . val ues, or
both at the same time with . kv

f or %opi ni ons. keys - > $what {
say “ Jonat han has a v i ew on $what “ ;

}

Pr i nt envi r onment var i abl es
f or %* ENV. kv - > $var , $val ue {

say “ $var = $val ue" ;
}

The Perl 6 Language

Iterating Over Many Arrays At Once

� More generally, can iterate over two or
more arrays at a time

� Use the zi p function to interleave the
elements of two or move lists

f or z i p(@i ds; @l ogi ns; @gr oupi ds)
- > $i d, $l ogi n, $gr oupi d {

say " $l ogi n: x: $i d: $gr oupi d: . . . " ;
}

The Perl 6 Language

Conditionals

The Perl 6 Language

Save two keystrokes!

� Fairly typical if…else style construct;
note no parentheses needed around
the condition

i f $x == 42 {
say " I t ©s t he answer ! " ;

} el s i f $x == 7 {
say " I t ©s per f ect ! " ;

} el se {
say " I t ©s some ot her number . " ;

}

The Perl 6 Language

Junctions

� Allow you to test a variable against
many conditions more easily

� The equivalent Perl 5 is

unl ess $i nput eq ©y© | ©n© | ©c© {
pr i nt " (y) es/ (n) o/ (c) ancel ? " ;

}

unl ess ($i nput eq ©y© | |
$i nput eq ©n© | |
$i nput eq ©c©) {

pr i nt " (y) es/ (n) o) / (c) ancel ? " ;
}

The Perl 6 Language

Junctions

� You can build junctions from an array
too

� There are other types of junction

all & true for all elements
one ^ true for exactly one element
none true for no elements

my @bad_ext = (©vbs©, ©j s©, ©exe©, ©r eg©) ;
i f l c($f i l e_ext) eq any(@bad_ext) {

say " $f i l e_ext f i l es not al l owed" ;
}

The Perl 6 Language

Chained Comparisons

� Now it's easier to check if a user input
is sandwiched between two values

i f 0 <= $scor e_pc <= 100 {
say " You can©t scor e $scor e_pc" ;

}

The Perl 6 Language

I/O

The Perl 6 Language

Reading Entire Files

� Reading in an entire file is now as
simple as

� Or to get an array with an element for
each line in the file

� Reads the whole file in one go – very
handy, but be careful when dealing with
big files!

my $f i l e_cont ent = s l ur p(" f i l ename. t xt ") ;

my @l i nes = s l ur p(" f i l ename. t xt ") ;

The Perl 6 Language

Iterating Over Files Line By Line

� Use open to get a file handle; use : r
to indicate we want to read

� Iterate over the file's lines using f or

� Close the file when you're done

my $f h = open " f i l e. t xt " : r ;

f or =$f h - > $l i ne {
. . .

}

$f h. c l ose() ;

The Perl 6 Language

Reading From STDIN

� All global variables start with $*

� The STDIN file handle is in $* I N

� Iteration the same as on the last
slide…

� Can read a single line too

f or =$* I N - > $l i ne
. . .

}

my $i nput = =$* I N;

The Perl 6 Language

Powerful List
Processing

The Perl 6 Language

List Processing

� Perl 6 has made some big advances
when it comes to doing operations
involving lists (arrays) of data

� Will make computing various statistics,
such as sums and averages, much
neater

� In general, implemented as meta-
operators: they add meaning to all
existing operators

The Perl 6 Language

Reduction Operators

� To form the reduction operator,
surround any infix operator by […]

Add al l el ement s of t he ar r ay
my $sum = [+] @val ues;

Mul t i pl y t oget her number s f r om 1 t o $n
my $f act or i al _n = [*] 1. . $n;

Check i f t he l i s t i s sor t ed ascendi ng
i f [<=] @l i st {

say " Sor t ed ascendi ng" ;
}

The Perl 6 Language

Hyper Operators

� Used to perform an operation per
element of an array

� This is similar to a loop that takes
elements 0 from @a and @b, adds them
and puts the result in element 0 of @c

� Gives permission for the operation on
different elements to be parallelized =>
good for the Concurrent Future

my @c = @a >>+<< @b;

The Perl 6 Language

Cross Operators

� Forms every possible permutation of
two or more lists

� This is a special case; can stick an
operator in-between two Xs

(1, 2) X (3, 4) # ((1, 3) , (1, 4) , (2, 3) , (2, 4))

I f @user _f act s cont ai ns wor ds r el at i ng t o
a user , can concat enat e al l possi bl e
combi nat i ons of t hem t oget her – t est f or
weak passwor ds. : -)
my @guesses = @user _f act s X~X @user _f act s;

The Perl 6 Language

Powerful
Text Parsing

The Perl 6 Language

From Regex To Rules And Grammars

� Regex in Perl 5 are very powerful for
parsing

� However, they are based on regular
languages

� Makes parsing some things,
particularly anything recursive (e.g.
bracketed data) tricky

� Some find the syntax a little arcane �

The Perl 6 Language

Grammars

� Grammars make defining how to parse
things easier

� Encourages re-use
gr ammar Conf i gFi l e {

t oken Fi l e { <Sect i on>+ }
t oken Sect i on { <Headi ng> <Ent r y>* }
t oken Headi ng { <©[©> (\ w+) <©] ©> \ n }
t oken Ent r y { (\ w+) <ws> = <ws>

(\ w+) \ n+
}

}

The Perl 6 Language

Final Thoughts

The Perl 6 Language

Play With Perl 6 Today!

� In your web browser
http://run.pugscode.org/

� Source code to Pugs (a partial Perl 6
compiler) is on the CD or get the latest
version from
http://www.pugscode.org/

� Perl 6 FAQ at
http://programmersheaven.com/2/Perl6-FAQ

The Perl 6 Language

Conclusion

� Perl 5 aims to make the easy things
easy and hard things possible

� Perl 6 aims to make the easy things
easier and the hard things less painful

� I think Perl 6 will be…

Beautiful

Cool

CoolA little crazy! ����

The Perl 6 Language

Thank you!

The Perl 6 Language

Questions?

