
Perl 6 Tutorial

Андрей Шитов & Джонатан Вортингтон

Український воркшоп «Перл мова» 2008

Perl 6 Tutorial: Introduction

The Plan

�About two hours

�Two speakers (Андрей and myself)

�Two languages (English and Russian)

�Two things you should do:

�Ask questions if you don’t understand

�Yell at me to slow down if I talk too

fast

Perl 6 Tutorial: Introduction

What we’ll be talking about

� Introduction – Джонатан

�Basic Syntax – Андрей

�Junctions – Джонатан

�Contexts And Subs – Андрей

�Object Orientation – Джонатан

�Smart Matching – Андрей

�Rules And Grammars – Джонатан

Perl 6 Tutorial: Introduction

What is Perl 6?

�The next version of the Perl language

�A complete re-design

�No official implementation

�Official grammar (specifies syntax)

�Official specification (specifies

semantics)

�Official test suite (considered part of

the specification)

Perl 6 Tutorial: Introduction

Implementations

�There are several implementation

efforts; amongst them are:

�Pugs – written in Haskell; has many

features but not maintained much now

�kp6 – bootstrapping approach; aiming

to write Perl 6 in Perl 6, coming along

�Rakudo – Perl 6 compiler for Parrot;

perhaps the most active effort at the

moment

Perl 6 Tutorial: Introduction

Isn’t it taking a while?

�Yes! ☺

�Because…

�Designing a large, complex and good

language takes a long time

� Implementing that language also takes

a long time and can be hard to do right

�Most people working on this are

volunteers

Perl 6 Tutorial: Introduction

When will we get a full implementation?

�The fun answer: Christmas

�However, which year is not specified

�“Every day will be like Christmas when

we have Perl 6!”

�The self-referential answer: when there

is an implementation that meets the

specification and passes the test suite

�Too early to give a realistic date yet

Perl 6 Tutorial: Introduction

What can I run today?

�The vast majority of the code examples

that we will be showing today work in

Rakudo Perl 6

�Admittedly, I sort of cheated…

� I hack on Rakudo…

�…and over the last couple of weeks,

have been implementing features that

I planned to talk about here today. ☺

Perl 6 Tutorial: Introduction

How can you help?

�Grab a copy of one of the Perl 6

implementations that is under active

development, play with it and report any

problems

�Tell us what you’ve found hard to

understand in today’s talk; Perl 6 is

meant to be understandable

�Or come along and join us in hacking on

the implementation

Perl 6 Tutorial: Introduction

Any questions
so far?

Perl 6 Tutorial: Basic Syntax

~~ Андрей ~~

Perl 6 Tutorial: Junctions

Junctions

Perl 6 Tutorial: Junctions

Who likes
quantum
physics?

Perl 6 Tutorial: Junctions

Quantum Superposition

�The theory: if you don’t know what state

something is in, then it is simultaneously

in all states until you observe it.

�Example:

� I’m about to give my junctions talk

�However, you haven’t observed it yet

�Therefore, my talk is simultaneously

awful and totally awesome

Perl 6 Tutorial: Junctions

One value that is many at the same time

�We know that an array contains many

values, and a scalar contains a single

value

�A junction…

� Is a scalar, but…

�Has many values at the same time

�"A quantum superposition of values"

my $scalar = 42;

my @array = (1, 2, 3);

Perl 6 Tutorial: Junctions

A simple example

�How often do you find yourself writing

things like:

�With junctions we can write this as:

�"vodka" | "beer" is a junction

if $drink eq 'vodka' || $drink eq 'beer' {

say "Don't get drunk on it!";

}

if $drink eq 'vodka' | 'beer' {

say "Don't get drunk on it!";

}

Perl 6 Tutorial: Junctions

Another example

�Another example: looping while a

counter stays below both of two different

limits:

�Can be re-written as:

while $count < $lim_a && $count < $lim_b {

...

}

while $count < $lim_a & $lim_b {

...

}

Perl 6 Tutorial: Junctions

Constructing Junctions From Arrays

�There are functions to construct

junctions from arrays too:

if all(@scores) > $pass_mark {

say "Everybody passed!";

}

if $word eq none(@mat) {

say "$word is not swearing!";

}

if any(@scores_a) > all(@scores_b) {

say "Someone in class A beat all of " ~

"the people in class B!";

}

Perl 6 Tutorial: Junctions

Types Of Junction

�"any" junctions – require one or more of

the values to match the condition (|)

�"all" junctions require all of the values

to match the condition (&)

�"one" junctions require exactly one of

the values to match the condition (^)

�"none" junctions require none of the

values in the junction to match the

condition

Perl 6 Tutorial: Junctions

Auto-threading

�You can use any operator on a junction

that you would have used with a scalar,

and the result will be a new junction of

results.
my $a = 1 | 2;

$a++; # Now we have 3 | 4

$a = $a + 5; # Now we have 8 | 9

my $res = "foo" ~ "bar" & "baz";

"foobar" & "foobaz"

Perl 6 Tutorial: Junctions

Auto-threading

� If you call a function and one of the

arguments to it is a junction, by default it

will call the function once for each value

in the junction.

�Therefore:

�Will call the say function twice,

producing two lines of output

say "hello" & "goodbye";

Perl 6 Tutorial: Junctions

Auto-threading

� If you have multiple functional

arguments, it will call it on all

permutations.

�So if greet works like this:

�Then with two junctions, we can do:

�And get four lines of output (BUT we get

no promises about the ordering)

greet("Hello", "Andrew"); # Hello Andrew

greet("Hi" & "Bye", "Andrew" & "Jonathan");

Perl 6 Tutorial: Junctions

If you don't want to auto-thread…

�Perl 6 has a type system

�The top level of the class hierarchy

looks like this:

�The default type of a parameter to a sub

is Any; if you give something a type of

Junction or Object, it won't thread.

Object

Junction Any

Perl 6 Tutorial: Junctions

Questions on
Junctions?

Object
Orientation

Perl 6 Tutorial: Object Orientation

Classes

Perl 6 Tutorial: Object Orientation

What Are Classes Used For?

� Instance Management

�Classes “create” objects

�Alternatively, you can view a class as

a kind of blueprint for how to create

an object

�Classes define both the state and

behaviour that an object has, and

relate them

Perl 6 Tutorial: Object Orientation

What Are Classes Used For?

�Code re-use

�We often try to design classes to do

one particular thing

�That means that, ideally, they can be

re-used to do that thing multiple

times, potentially in multiple programs

Perl 6 Tutorial: Object Orientation

What Are Classes Used For?

�Providing a route to polymorphism

�This means that the same code can

safely operate on values of different

types

� Inheritance relationships state that a

subclass can be used in place of any

of its parent classes

�Enables more code re-use

Perl 6 Tutorial: Object Orientation

Classes In Perl 6

� Introduce a class using the class

keyword

�With a block:

�Or without to declare that the rest of

the file describes the class.

class Puppy {

…

}

class Puppy;

Perl 6 Tutorial: Object Orientation

They�called�me�

WHAT?!

They�called�me�

WHAT?!

white

They�called�me�

WHAT?!

4�paws

white

They�called�me�

WHAT?!

4�paws tail

white

Attributes

� Introduced using the has keyword

�All attributes in Perl 6 are stored in an

opaque data type

�Hidden to code outside of the class

class Puppy {

has $name;

has $colour;

has @paws;

has $tail;

}

Perl 6 Tutorial: Object Orientation

Accessor Methods

�We want to allow outside access to

some of the attributes

�Writing accessor methods is boring!

�$. means it is automatically generated

class Puppy {

has $.name;

has $.colour;

has @paws;

has $tail;

}

Perl 6 Tutorial: Object Orientation

Mutator Methods

�We should be able to change some of

the attributes

�Use is rw to generate a mutator

method too

class Puppy {

has $.name is rw;

has $.colour;

has @paws;

has $tail;

}

Perl 6 Tutorial: Object Orientation

w00f!

w00f!

chew($stuff)

w00f!

chew($stuff)

play_in_garden

w00f!

chew($stuff)

wag_tail

play_in_garden

Methods

�The new method keyword is used to

define a method

�Parameters go in a parameter list; the

invocant is optional!

method bark() {

say “w00f!”;

}

method chew($item) {

$item.damage++;

}

Perl 6 Tutorial: Object Orientation

Attributes In Methods

�Attributes can be accessed with the $.

syntax, via their accessor

�To get at the actual storage location,
$!colour can be used

method play_in_garden() {

$.colour = 'black';

}

method play_in_garden() {

$!colour = 'black';

}

Perl 6 Tutorial: Object Orientation

Using A Class

�A default new method is generated for

you that sets attributes

�Also note that -> has become .

my $puppy = Puppy.new(

:name('Rosey'),

:colour('white')

);

$puppy.bark(); # w00f!

say $puppy.colour; # white

$puppy.play_in_garden();

say $puppy.colour; # black

Perl 6 Tutorial: Object Orientation

Inheritance

�A puppy is really a dog, so we want to

implement a Dog class and have Puppy

inherit from it

� Inheritance is achieved using the is

keyword
class Dog {

…

}

class Puppy is Dog {

…

}

Perl 6 Tutorial: Object Orientation

Multiple Inheritance

�Multiple inheritance is possible too; use
multiple is statements

class Puppy is Dog is Pet {

…

}

Perl 6 Tutorial: Object Orientation

Roles

Perl 6 Tutorial: Object Orientation

In Search Of Greater Re-use

� In Perl 6, roles take on the task of re-

use, leaving classes to deal with

instance management

�We need to implement a walk method

for our Dog class

�However, we want to re-use that in the
Cat and Pony classes too

�What are our options?

Perl 6 Tutorial: Object Orientation

The Java, C# Answer

�There’s only single inheritance

�You can write an interface, which

specifies that a class must implement a
walk method

�Write a separate class that implements
the walk method

�You can use delegation (hand coded)

�Sucks

Perl 6 Tutorial: Object Orientation

The Multiple Inheritance Answer

�Write a separate class that implements
the walk method

� Inherit from it to get the method

�Feels wrong linguistically

�“A dog is a walk” – err, no

�“A dog does walk” – what we want

�Multiple inheritance has issues…

Perl 6 Tutorial: Object Orientation

Multiple Inheritance Issues

�The diamond inheritance problem

�Do we get two copies of

A’s state?

� If B and C both have a
walk method, which do

we choose?

� Implementing multiple inheritance is

tricky too

A

B C

D

Perl 6 Tutorial: Object Orientation

Mix-ins

�A mix-in is a group of one or more

methods than can not be instantiated

on their own

�We take a class and “mix them in” to it

�Essentially, these methods are added

to the methods of that class

�Write a Walk mixin with the walk

method, mix it in.

Perl 6 Tutorial: Object Orientation

How Mix-ins Work

�Defined in terms of single inheritance

�Take C and derive anonymous classes

with methods of M1, then M2

M1

C

M2 M1

C

M2

Compilation

Perl 6 Tutorial: Object Orientation

Issues With Mix-ins

� If M1 and M2 both have methods of the

same name, which one is chosen is

dependent on the order that we mix in

�Fragile hierarchies problem again

�Further, mix-ins end up overriding a

method of that name in the class, so

you can’t decide which mix-in’s method

to actually call in the class itself

Perl 6 Tutorial: Object Orientation

The Heart Of The Problem

�The common theme in our problems is

the inheritance mechanism

�Need something else in addition

�We want

�To let the class be able to override

any methods coming from elsewhere

�Explicit detection and resolution of

conflicting methods

Perl 6 Tutorial: Object Orientation

Flattening Composition

�A role, like a mix-in, is a group of

methods

� If a class does a role, then it will have

the methods from that role, however:

� If two roles provide the same method,

it’s an error, unless the class provides

a method of that name

�Class methods override role methods

Perl 6 Tutorial: Object Orientation

Creating Roles

�Roles are declared using the role

keyword

�Methods declared just as in classes
role Walk {

method walk($num_steps) {

for 1..$num_steps {

.step for @paws;

}

}

}

Perl 6 Tutorial: Object Orientation

Composing Roles Into A Class

�Roles are composed into a class using
the does keyword

�Can compose as many roles into a

class as you want

�Conflict checking done at compile time

�Works? Not quite…

class Dog does Walk {

…

}

Perl 6 Tutorial: Object Orientation

Composing Roles Into A Class

�Notice this line in the walk method:

�Can state that a role “shares” an

attribute with the class it is composed
into using has without . or !

.step for @paws;

has @paws;

Perl 6 Tutorial: Object Orientation

Questions?

Perl 6 Tutorial: Object Orientation

Perl 6 Tutorial: Smart Matching

~~ Андрей ~~

Perl 6 Tutorial: Regexes And Grammars

Regexes
&

Grammars

Perl 6 Tutorial: Regexes And Grammars

What I'll Cover

�Could spend a whole day on this topic

� In this quick review, I'll look at:

�What's not changing from Perl 5

�Some of the changes to notable

features

�Then we will have a look at named

regexes along with grammars

Perl 6 Tutorial: Regexes And Grammars

What's Staying The Same

�You can still write regexes between

slashes

�The ?, + and * quantifiers

�??, +? and *? lazy quantifiers

�(…) is still used for capturing

�Character class shortcuts: \d, \w, \s

� | for alternations (but semantics are

different; use || for the Perl 5 ones)

Perl 6 Tutorial: Regexes And Grammars

Change: Literals And Syntax

�Anything that is a number, a letter or the

underscore is a literal

�Anything else is syntax

�You use a backslash (\) to make literals

syntax and to make syntax literals

/foo_123/ # All literals

/\<\w+\>/ # \< and \> are literals

\w is syntax

Perl 6 Tutorial: Regexes And Grammars

Change: Whitespace

�Now what was the x modifier in Perl 5

is the default

�This means that spaces don't match

anything – they are syntax
/abc/ # matches abc

/a b c/ # the same

Perl 6 Tutorial: Regexes And Grammars

Change: Quoting

�Single quotes interpret all inside them

as a literal (aside from \')

�Can re-write:

As the slightly neater:

�Spaces are literal in quotes too:

/\<\w+\>/

/'<' \w+ '>'/

/'a b c'/ # requires the spaces

Perl 6 Tutorial: Regexes And Grammars

Change: Grouping

�A non-capturing group is now written

as […] (rather than (?:…) in Perl 5)

�Character classes are now <[…]>; they

are negated with -, combined with + or

- and ranges are expressed with ..

/[foo|bar|baz]+/

/<[A..Z]>/ # uppercase letter...

/<[A..Z] - [AEIOU]>/ # ...but not a vowel

/<[\w + [-]]> # anything in \w or a -

Perl 6 Tutorial: Regexes And Grammars

Change: s and m

�The s and m modifiers are gone

�. now always matches anything,

including a new line character

�Use \N for anything but a new line

�^ and $ always mean start and end of

the string

�^^ and $$ always mean start and end

of a line

Perl 6 Tutorial: Regexes And Grammars

Matching

�To match against a pattern, use ~~

�Negated form is !~~

� $/ holds the match object; when used as a

string, it is the matched text

if $event ~~ /\d**4/ { ... }

if $event ~~ /\d**4/ { say "missing year"; }

my $event = "Ukrainian Perl Workshop 2008";

if $event ~~ /\d**4/ {

say "Held in $/"; # Held in 2008

}

Perl 6 Tutorial: Regexes And Grammars

Named Regexes

�You can now declare a regex with a

name, just like a sub or method

�Then name it to match against it:

regex Year { \d**4 }; # 4 digits

if $event ~~ Year { ... }

Perl 6 Tutorial: Regexes And Grammars

Calling Other Regexes

�You can "call" one regex from another,

making it easier to build up complex

patterns.
regex Year { \d**4 };

regex Place { Ukrainian | Dutch | German };

regex Workshop {

<Place> \s Perl \s Workshop \s <Year>

};

regex YAPC {

'YAPC::' ['EU'|'NA'|'Asia'] \s <Year>

};

regex PerlEvent { <Workshop> | <YAPC> };

Perl 6 Tutorial: Regexes And Grammars

The Match Object

�Can extract the year from a list of event

names like this:
for @events -> $ev {

if $ev ~~ PerlEvent {

if $/<YAPC> {

say $/<YAPC><Year>;

} else {

say $/<Workshop><Year>;

}

} else {

say "$ev was not a Perl event.";

}

}

Perl 6 Tutorial: Regexes And Grammars

rule and token

�By default, regexes backtrack

�Not very efficient for building parsers

� If you use token or rule instead or

regex, it will not backtrack

�Additionally, rule will replace any

literal spaces in the regex with a call to
ws (<.ws>), which you can customize

for the thing you are parsing

Perl 6 Tutorial: Regexes And Grammars

Using Perl 6 to parse Perl 6

�Rakudo's Perl 6 compiler has its parser

written using Perl 6 rules

�The regex implementation is one of the

most complete parts of Rakudo

rule if_statement {

$<sym>=[if]

<EXPR> <block>

['elsif' <EXPR> <block>]*

['else' $<else>=<block>]?

{*}

}

Perl 6 Tutorial: Closing Thoughts

Closing
Thoughts

Perl 6 Tutorial: Closing Thoughts

Links

�Follow the progress of Rakudo or get

involved at:
www.rakudo.org

�Perl 6 language specification available

at:

dev.perl.org/perl6/

�Unofficial Perl 6 FAQ at:

www.programmersheaven.com/2/Perl6

-FAQ

Perl 6 Tutorial: Closing Thoughts

Closing Thoughts

�Thanks for having me at your

workshop, even though I can't speak
any('Russian','Ukrainian')

�Perl 6 has taken a while to design, and

is taking a while to implement (because

they designed a lot of things ;-))

�Plenty of people working to make it

happen; more help always needed!

Perl 6 Tutorial: Regexes And Grammars

Questions?

