The Perl 6
EXpress

Jonathan Worthington

Nordic Perl Workshop 2009

The Perl 6 Express

About Me
Originally from England

Currently living in Slovakia
Like curry, heavy metal and travelling

The Perl 6 Express

About Me
Originally from England

Currently living in Slovakia
Like curry, heavy metal and travelling

Slovakia

The most common question | get asked
about Slovakia

Slovakia

The most common question | get asked
about Slovakia

"Where on earth i1s that?"

Slovakia

In Central Europe; borders Austria,
Hungary, Ukraine, Poland and the
Czech Republic

Slovakia/Scandinavia Comparison

Slovakia Scandinavia
Sea Landlocked Everywhere
Language Family Slavic Northern Germanic
Has Many Beautiful Yes Yes
Areas
Eating Raw Fish No Yes
Considered Normal
Beer price Cheap OMG WTF?!
Have opium as a Yes No
Christmas tradition

About This Talk

A look at some of the changes and new
features in Perl 6, the next version of

the Perl programming language that Is
currently in development

More of an overview of what's on offer
than an in-depth tutorial

Sticks to code that you can run on a
Perl 6 implementation today (Rakudo)

About This Talk

WIll be two sections of an hour each,
with a ten-minute break in the middle

First half iIs mostly basic stuff
Second half iIs mostly not-so-basic stuff

(But hey, at least none of it is Visual
Basic stuff)

Feel free to ask questions at any point
you don't understand

A Little
Background

What is Perl 67

Perl 6 Is a ground-up re-design and re-
Implementation of the language

Not backward compatible with Perl 5

Opportunity to add, update and fix
many things

There will be a code translator and
you will be able to use many Perl 5
modules from Perl 6

Language vs. Implementation

In Perl 5, there was only one
Implementation of the language

Other languages have many choices

Perl 6 Is the name of the language, but
not of any particular implementation
(just like C)

Various implementation efforts
underway

Rakudo

An implementation of Perl 6 on the
Parrot Virtual Machine

VM aiming to run many dynamic
languages and allow interoperability
between them

Implemented partly in NQP (a subset of
Perl 6), partly in Perl 6 (some built-ins),
partly in Parrot Intermediate Language

and a little bit of C

Why "Rakudo"?
Suggested by Damian Conway
Some years ago, Con Wel Sensel

iIntroduced a new martial art in Japan
named "The Way Of The Camel”

In Japanese, this is "Rakuda-do”

The name quickly became abbreviated
to "Rakudo", which also happens to
mean "paradise" in Japanese

How To Build Rakudo

Clone the source from GIT
git://github.com/rakudo/rakudo.qgit

Build it (builds Parrot for you):

perl Configure.pl --gen-parrot
make perl6

Run it on the command line, with a

script or Iin interactive mode

perl6 —e "say 'Hello, world!"
perl6 script.p6
perlo

Rakudo Progress

Variables

Declaring Variables
As In Perl 5, declare lexical variables
with my

my $answer = 42;
my $city = 'Oslo’;
my $very approx_pi = 3.14;

Unlike In Perl 5, by default you must
declare your variables (it's like having
use strict on by default)

You can also use our for package
variables, just like in Perl 5

Sigils
All variables have a sigil

Unlike in Perl 5, the sigil is just part of
the name ($a[42] is now @a[42]).

The sigil defines a kind of "interface
contract” — promises about what you
can do with this variable

Anything with @ sigil can be indexed
Into positionally, using [...]

Arrays

Hold zero or more elements and allow

you to index into them with an integer

Declare an array.
my @scores;

Or Initialize with some Initial values.
my @scores = 52,95,78;
my @scores = <52 95 7/8>; # The same

Get and set individual elements.
say @al[l]; # 95

@a[0] = 100;

say @a[0]; # 100

Hashes

Hold zero or more elements, with keys
of any type

Declare a hash.
my %ages;

Set values.

%ages<Fred>=19; # Constant keys

my $name = 'Harry’;

%ages{$name} = 23; # More complex ones

Get an individual element.
say Y%ages<Harry>;, # 23

State Variables

Are Initialised the first time a block iIs
entered

Retain their values between invocations
of the block

sub count {
state $count = 1;
say $count++;

}
count() for 1..3;

1
2

3

State Variables

However, If the block is cloned (for
example, when you take a closure) then
the state Is lost

sub create counter {
return {
state $count = 1;
say $count++;

%
}

my $cl = create_counter();
my $c2 = create_counter();
$c1(); $cl(); #12
$c2(); $c2(); $c2(); #123

lteration

The for Loop To lterate

In Perl 6, the for loop is used to iterate
over anything that provides an iterator

By default, puts the variable into $

The following example will print all of the
elements in the @scores array

my @scores = <52 95 78>;
for @scores {

say $;
}

The for Loop To lterate
Anything between { ... } Is just a block

In Perl 6, a block can take parameters,
specified using the -> syntax

my @scores = <52 95 78>;
for @scores -> $score {
say $score;

}

Here, we are naming the parameter to
the block that will hold the iteration
variable

The for Loop To lterate

kv method of a hash returns keys and
values in a list

A block can take multiple parameters,
SO we can Iterate over the keys and

values together

my %ages = (Fred => 45, Bob => 33);
for %ages.kv -> $name, $age {
say "$name is $age years old";

Fred is 45 years old
Bob is 33 years old

The loop Loop
The for loop Is only for iteration now;
for C-style for loops, use the loop

keyword

loop (my $i = 1; $i <= 42; $i++) {
say $i;
}

Bare loop block is an infinite loop

loop {
my $cur_pos = get_position();
update trajectory($target, $cur_pos);

Conditionals

The If Statement

You can use the if...elsif...else style

construct in Perl 6, as In Perl 5

If $foo == 42 {
say "The answer!";
} elsif $foo == 0 {
say "Nothing";
} else {
say "Who knows what";

}

However, you can now omit the
parentheses around the condition

Chained Conditionals

Perl 6 supports "chaining" of

conditionals, so instead of writing:

iIf $roll >= 1 && $roll <=6 {
say "Valid dice roll"

}

You can just write:

If 1 <= $roll <=6 {
say "Valid dice roll"

}

Chained Conditionals

You are not limited to chaining just two

conditionals

If 1 <= $rolll == $roll2 <=6 {
say "Doubles!"

}
Here we check that both roles of the
dice gave the same value, and that both
of them are squeezed between 1 and 6,

Inclusive

Subroutines

Parameters
You can write a signature on a sub

Specifies the parameters that it expects
to receive

Unpacks them into variables for you

sub order_beer($type, $how many) {
say "$how_many pints of $type, please”;

}
order_beer(‘Tuborg', 5);

5 pints of Tuborg, please

Auto-Referencing

Arrays and hashes can be passed
without having to take references to

prevent them from flattening

sub both_elems(@a, @b) {
say @a.elems;
say @b.elems;
}
my @x = 1,2,3;
my @y = 4,5;
both_elems(@x, @Y);

3
2

Optional Parameters
Parameters can be optional

Write a ? after the name of the

parameter to make it so
sub speak($phrase, $how loud?){... }

Alternatively, give it a default value

sub greet($name, $greeting = 'Heyj') {
say "$greeting, $name";
}
greet('Anna’); # Hej, Anna
greet('Lenka’, ' au'); # au, Lenka

Named Parameters

Named parameters are also available

sub catch_train(:$number!, :$car, :$place) {
my $platform = find_platform($number);
walk_to($platform);
find_place($car, $place);

}

catch_train(
number => '005',
place => 23
car => 5,

Optional by default; use ! to require

Slurpy Parameters

For subs taking a variable number of

arguments, use slurpy parameters

sub say double(*@numbers) {
for @numbers {
say2*$;

}

}
say double(); # No output

say double(21); # 42\n
say double(5,7,9); # 10\n14\n18\n

Use *%named for named parameters

ODbject
Orientation

Everything Is An Object
You can treat pretty much everything as
an object If you want

For example, arrays have an elems

method to get the number of elements

my @scores = <52 95 78>;
say @scores.elems; # 3

Can also do push, pop, etc. as methods

@scores.push(88);
say @scores.shift; # 52

Classes

Basic class definitions in Perl 6 are not
so unlike many other languages

Attributes specifying state

Methods specifying behaviour

class Dog {
has $.name;
has @!paws,;
method bark() {
say "wOOf";

}

Attributes

All attributes are named $!'foo (or
@!'foo , %!foo , etc)

Declaring an attribute as $.foo
generates an accessor method

Adding isrw makes it a mutator

method too

nas $!brain; # Private
has $.color; # Accessor only
nas $.name is rw; # Accessor and mutator

Methods

Automatically take the invocant and
make It accessible using the self

keyword

method be angry() {
self.bark() for 1..10;

}
Methods are all virtual (so they override

anything of the same name in a parent
class; exception: multi-methods, come

to tomorrow's talk)

Inheritance

Done using the iIs keyword
class Puppy is Dog {
method bark() { # an override
say "yap";
}

method chew($item) { # a new method
$item.damage;

}

Multiple inheritance also possible
class Puppy is Dog Is Pet{ ... }

Delegation
The handles keyword specifies that

an attribute handles certain methods

has $!brain handles 'think";
has $!mouth handles <bite eat drink>;

You can use pairs to rename them
has $!brain handles :think(‘'use_brain’)

Really all the compiler is doing Is
generating some "forwarder" methods
for you

Delegation
If you write anything else after handles,
the method name is smart-matched
against it
Can write a regex...

has $!butt handles /poo<[ph]>/;

Or Whatever to delegate any methods
that aren't otherwise defined by the

class
has $!lowner handles *:

Proto-objects
When you declare a class, it installs a
prototype object in the namespace

Somewhat like an "empty" instance of
the object

You can call methods on it which don't
depend on the state; for example, the

new method to create a new instance:
my $fido = Dog.new();

Instantiation

When you instantiate an object you can
also specify initial attribute values

my $pet = Puppy.new(
name => 'Rosey’,
color => 'White'

Instantiation

When you instantiate an object you can
also specify initial attribute values

my $pet = Puppy.new(
name => 'Rosey,
color => "White'
);

Instantiation

When you instantiate an object you can
also specify initial attribute values

my $pet = Puppy.new(
name => '‘Rosey’, ? erl 6 rocks!

~—

color => 'White'

Metaclasses
There i1s no Class class

A proto-object points to the metaclass,
making It available through the . HOW
(Higher Order Workings) macro

This allows for introspection (getting a
list of its methods, attributes, parents,
roles that it does and so forth — all of
which can be further introspected)

Basic I/O

File Handle Objects
/0O 1S now much more OO

The open function will now return an IO

object, which you call methods on to do
iInput/output

open takes a named parameter to

specify the mode

my $fh = open("foo.txt", ir); # read

my $fth = open("foo.txt", :w); # write

my $fth = open("foo.txt", :rw); # read/write
my $fh = open("foo.txt", :a); # append

lterating Over A File

Use the for loop to iterate over the file
handle, and the prefix = operator to get

an Iterator from the file handle

my $fh = open("README", :1);
for =$fh -> $line {
say $line;

}
$fth.close();

Note that this auto-chomps: new line
characters are removed from $line

Writing To A File
To write to a file, just call the print and

say methods on the file handle object

my $fh = open("example.txt", :w);
for 1..10 -> $i {
$th.say($i);

}
$fh.close();

Standard Handles

STDIN is available as the global $*IN,
STDOUT as $*OUT and STDERR as
$ERR

They are just file handle objects, so it's
possible to call methods on them to

read/write with them

print “Your name is: ",
my $name = $*IN.readline;
say "Hi, $name!";

A Couple Of Handy Functions

The slurp function lets you read an

entire file Into a scalar
my $content = slurp("data.txt");

The prompt function prints the given
message, then takes input from STDIN

my $name = prompt "Your name is: ",
say "OH HAI, { $nhame.uc }!";

~~ Break ~~

Types

Types

In Perl 6, values know what kind of
thing they are

say 42.WHAT, # Int

say "beer". WHAT, # Str

sub answer { return 42 }

say &answer.WHAT, # Sub
Including your own classes

class Dog{ ... }

my $fido = Dog.new();
say $fido.WHAT,; # Dog

Typed Variables

We can refer to types in our code by
name

For example we can declare a variable

can only hold certain types of thing

my Int $x = 42; # OK, 42 isa Int
$x = 100; # OK, 100 isa Int
$x = "CHEEZBURGER"; # Error

Again, this works with types you have
defined In your own code too

Typed Parameters

Types can also be written in signatures
to constrain what types of parameters
can be passed

sub hate(Str $thing) {
say "$thing, you REALLY suck!";

}
hate("black hole"); # OK

hate(42); # Type check failure

Subtypes

In Perl 6, you can take an existing type
and "refine" it
subset Positvelnt of Int where{$ >0}

Pretty much any condition is fine

The condition will then be enforced per

assignment to the variable

my Positivelnt $x = 5; # OK
$x = -10; # Type check failure

Anonymous Subtypes
Like other types, you can use them on
subroutine parameters

You can also write an anonymous
refinement on a sub parameter

sub divide(Num $a,
Num $b where { $™"n =0 }) {

return $a / $b;
}
say divide(126, 3); # 42
say divide(100, 0); # Type check failure

Junctions

Junctions

How often do you find yourself writing
things like:

If $drink eq 'wine' || $drink eq 'beer’ {
say "Don't get drunk on it!";

}
With junctions we can write this as:
If $drink eq 'wine' | 'beer’ {
say "Don't get drunk on it!";

}
"wine" | "beer" IS a junction

What are |unctions?

A junction can be used anywhere that
you would use a single value

You store 1t In a scalar

But, it holds and can act as many values
at the same time

Different types of junctions have
different relationships between the
values

Constructing Junctions From Arrays

You can construct junctions from arrays

If all(@scores) > $pass _mark {
say "Everybody passed!";

}

If any(@scores) > $pass_mark {
say "Somebody passed";

}

If one(@scores) > $pass_mark {
say "Just one person passed";

}

If none(@scores) > $pass_mark {
say "EPIC FAIL"Y,

}

Junction Auto-Threading

If you pass a junction as a parameter
then by default it will auto-thread

That is, we will do the call once per item

INn the junction

sub example($x) {
say "called with $x";

}
example(1|2|3);

called with 1
called with 2

called with 3

Junction Auto-Threading
The default parameter type is Any

However, this is not the "top" type — that
IS Object

Junction inherits from Object, not Any

Junction Auto-Threading
The default parameter type is Any

However, this is not the "top" type — that
IS Object

Junction inherits from Object, not Any

sub example(Junction $x) {
say "called with " ~ $x.perl;

}
example(1|2|3);
example(42);

called with any(1, 2, 3)

Parameter type check failed for $x in call to examp

Junction Auto-Threading
The default parameter type is Any

However, this is not the "top" type — that
IS Object

Junction inherits from Object, not Any

sub example(Object $x) {
say "called with " ~ $x.perl;

}
example(1|2|3);
example(42);

called with any(1, 2, 3)
called with 42

Junction Auto-Threading
The return value that you get maintains

the junction structure

sub double($x) {
return $x * 2;

}
my $x = double(1 | 2 & 3);

say $x.perl;

any(2, all(4, 6))

We thread the leftmost all or none
junction first, then leftmost any or one

Meta-Operators

Reduction Operators
Takes an operator and an array

Acts as If you have written that operator

between all elements of the array

Add up all values in the array.
my $sum = [+] @values;

Compute 10 factorial (1 *2*3* ... *10)
my $fact = [*] 1..10;

Check a list is sorted numerically.
If [<=] @values { ... }

Hyper Operators

Takes an operator and does it for each
element in an array, producing a new

array.

my @roundl_scores = 10,18,9;

my @round2_scores = 14,5,13;

say @roundl_scores >>+<< @round2_scores;
24 23 22

Point "sharp end" outwards to replicate

last element If needed
my @doubled = @In >>*>> 2;

Cross Operators

Alone, produces all possible

permutations of two or more lists
my @a =1,2;
my @b ="'a’, 'b’;
say (@a X @Db).perl; #["1", "a", "1", "b",
"2", "a", "2", "b"]
Can also take an operator and use It to
combine the elements together in some

way, e.g. string concatenation

say (@a X~ @b).perl; # ['1a", "1b",
"2a", "2b"]

Regexes And
Grammars

What's Staying The Same

You can still write regexes between
slashes

The ?, + and * quantifiers

?7?, +? and *? lazy quantifiers

(...) Is still used for capturing
Character class shortcuts: \d, \w, \s

| for alternations (but semantics are
different; use || for the Perl 5 ones)

Change: Literals And Syntax

Anything that is a number, a letter or the
underscore IS a literal
ffoo 123/ # All literals

Anything else Is syntax

You use a backslash (\) to make literals
syntax and to make syntax literals

N<\w+\>/ #\< and \> are literals
\w Is syntax

Change: Whitespace

Now what was the x modifier in Perl 5
IS the default

This means that spaces don't match
anything — they are syntax

/abc/ # matches abc
/abcl/ #the same

Change: Quoting

Single quotes interpret all inside them
as a literal (aside from \")

Can re-write:
N<\WH\>/

As the slightly neater:
['< \W+ ">/
Spaces are literal in quotes too:

['a b c'/ # requires the spaces

Change: Grouping

A non-capturing group Is now written
as [...] (rather than (?:...) in Perl 5)

/[foo|bar|baz]+/

Character classes are now <[...]>; they
are negated with -, combined with + or

- and ranges are expressed with ..

I<[A..Z]>/ # uppercase letter...
[<[A..Z] - [AEIOU]>/ # ...but not a vowel
I<[\w + [-]]> # anything in \w or a -

Change: s and m
The s and mmodifiers are gone

. how always matches anything,
iIncluding a new line character

Use \N for anything but a new line

N and $ always mean start and end of
the string

Moand $$ always mean start and end
of a line

Matching

To match against a pattern, use ~~
If $event ~~ N\d**4/ { ... }

Negated form Is !~~
If $event |~~ N\d**4/ { fail "no year"; }

$/ holds the match object; when used as a

string, It Is the matched text

my $event = "Nordic Perl Workshop 2009";
If $event ~~ \d**4/ {
say "Held in $/*; # Held in 2009

}

Named Regexes

You can now declare a regex with a
name, just like a sub or method
regex Year { \d**4 }, # 4 digits

Then name It to match against it:
if Sevent ~~ /<Year>/{...}

Calling Other Regexes

You can "call" one regex from another,
making it easier to build up complex

patterns and re-use regexes

regex Year {\d**4 };
regex Place { Nordic | Ukrainian };

regex Workshop {
<Place> \s Perl \s Workshop \s <Year>

I
regex YAPC {

YAPC::' ['EU''NA'I'Asia’] \s <Year>
I

regex Event { <Workshop> | <YAPC> };

The Match Object

Can extract the year from a list of event

names like this:

for @events -> $ev {
If $ev ~~ /<Event>/ {
If $/<Event><YAPC> {
say $/<Event><YAPC><Year>;
} else {
say $/<Event><Workshop><Year>;
}
} else {
say "$ev was not a Perl event.";

}

rule and token

By default, regexes backtrack

Not very efficient for building parsers

If you use token orrule Instead or
regex , it will not backtrack

Additionally, rule will replace any

literal spaces in the regex with a call to
ws (<.ws>), which you can customize

for the thing you are parsing

Roles

What Are Roles?

Traditionally in OO programming, the
class was responsible for both instance
management and software re-use

In Perl 6, software re-use Is better
provided for by roles

A role iIs a unit of functionality that you
can compose Into a class at compile
time or mix In to an object at run time

Writing A Role

A role looks very much like a class — it

can have methods and attributes

role Log {
has @.log_lines;
has $.log_size is rw = 100;
method log_message($message) {
@!log_lines.shift if
@'log_lines.elems >= $log_size;
@!log_lines.push($message);

Role Composition

Composing gives a class the role's
methods and attributes

class Crawler does DebuglLog {
method get_url($url) {
self.log_message("Requesting $url");

try {

self.log_message("Got $url™;
CATCH {
self.log_message("Failed $url: $!");

Role Composition

The methods from the role appear just
as methods from the class would

my $c = Crawler.new();
$c.get_url("http://www.xkcd.com/");
$c.get_url("http://travel.jnthn.net/");
$c.get_url("http://www.goatse.cx");
.say for $c.log_lines;

Requesting http://www.xkcd.com/
Got http://www.xkcd.com/
Requesting http://travel.jnthn.net/

Got http://travel.jnthn.net/
Requesting http://www.goatse.cx
http://www.goatse.cx: DO NOT WANT! IT R SRSLY BLECH

Role Composition

Composition of roles into a class Is
flattening — no one role is more
Important than any other

Trying to compose two roles into a
class with methods of the same name:

role Diagramming { method explode() { ... } }
role Exploding { method explode() { ... } }
class FirePaper does Diagramming does Exploding {

)
Is an error at class composition time.

Role Mix-In

You can mix a role into an existing

object, on a per-object basis.

sub foo(@x) {
@x.?log_message('l was used in sub foo');

}

@array does DebuglLog;

foo(@array); # Will make log entry
foo([1,2,3]); # Fine since we used .?

.say for @array.log_lines;

| was used in sub foo

Parametric Roles

Roles are good for factoring out
behaviours

Sometimes you need to be able to
customize the behaviour by values or

types
Roles in Perl 6 can take parameters

Provide values for the parameters
when composing/mixing in the role

Parametric Roles
This role needs a string parameter

role Request[Str $statement] {
method request($object) {
say "$statement $object?";

}
}

class EnglishMan does Request['Please can | have a"] {}
class Slovak does Request['Prosim si"] { }

class Lolcat does Request['l CAN HAZ"] {}
EnglishMan.new.request("yorkshire pudding");
Slovak.new.request("pivo");

Lolcat.new.request("CHEEZEBURGER");

Please can | have a yorkshire pudding?

Prosim si pivo?
| CAN HAZ CHEEZEBURGER?

Parametric Roles

Anything you can write in a signhature IS
fine; here we use the slurpy syntax and
expect to be passed one or more types

Call to insert uses this to validate types

of the parameters passed

role Table[*@T] {
method insert(*@values
where { all(@values >>~~<< @T) }) {
say "Inserted row";

Parametric Roles

Anything you can write in a signhature IS
fine; here we use the slurpy syntax and
expect to be passed one or more types

Call to insert uses this to validate types

of the parameters passed

role Table[*@T] {
method insert(*@values
where { all(@values >> ~~<< @T) D {
say "Inserted row";

J Smart-match

Parametric Roles

Anything you can write In a signature IS
fine; here we use the slurpy syntax and
expect to be passed one or more types

Call to insert uses this to validate types

of the parameters passed

role Table[*@T] {
method insert(*@values
where { all(@values >>~~<< @T) }) {
say "Inserted row";

Hyper smart-match

Parametric Roles

Anything you can write In a signature IS
fine; here we use the slurpy syntax and
expect to be passed one or more types

Call to insert uses this to validate types

of the parameters passed

role Table[*@T] {
method insert(*@values
where { all(@values >>~~<< @T) D {

say "Inserted row"; \

List of boolean results

Parametric Roles

Anything you can write In a signature IS
fine; here we use the slurpy syntax and
expect to be passed one or more types

Call to insert uses this to validate types

of the parameters passed

role Table[*@T] {
method insert(*@values
where { all(@values >>~~<< @T) D {

say "Inserted row"; \

) all junction

Punning

If you try to instantiate a role, i1t will
automatically generate ("pun") a class
that does the role

Here's a simple example of using our
Table type

my $t = Table[Int, Str].new();
$t.insert(42, "oh hai"); # lives
$t.insert("fail", "oh hai"); # dies

The second call to insert dies because
of a type check failure

Aside: Just For Fun

Note that we can also define a subset
type to create field types with more
constraints

subset Smallint of Int where {-128 <= $"n <= 127 };
my $t = Table[Smallint, Str].new();

$t.insert(100, "foo"); # lives

$t.insert(-10, "bar"); # lives

$t.insert(200, "baz"); # dies

The first two calls work, the third falils
because we don't match the constraint

Aside: Just For Fun

Constraints can take their parameter as
rw (read-write) and modify them

That means we can do auto-increment

subset Autolncr of Int where -> $val is rw {
state $current = 1;
$val = $Scurrent++;
I
my $t = Table[Autolncr, Str].new();
$t.insert(0, "omg");
$t.insert(0, "wtf'");
$t.insert(0, "bbq");

Inserted row: 1, omg

Inserted row: 2, wif
Inserted row: 3, bbq

Learning More

Where To Learn More

The Rakudo Perl 6 implementation has
a site at

http://www.rakudo.org/

Much Perl 6 Goodness linked from
http://www.perl6-projects.org/

If you're interested In helping make

Rakudo happen more quickly, don't
miss Patrick's talks!

Get Involved!

Write applications in Perl 6 and run
them on Rakudo

Report bugs and/or missing features
that you are interested In

Sometimes Iit'll be something easy
and your ticket will inspire someone

Come hack on Rakudo (easiest way In:
go and see Patrick's talks)

Thank you!

Questions?

