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Я хочу 

пиво…
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Overview

�Much more rigorous testing, which has 

led to greater stability 

�A lot of new features implemented

�A lot of things that we were sort of 

cheating on now done correctly

�More people contributing patches

�More people writing Perl 6 programs 

and running them on Rakudo
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Testing Really Matters

�Experience has shown that…

�Whenever a new feature is added, 

tests must be added at the same time

�Otherwise, it will get broken by some 

future change

�Many complex feature interactions

�Changes can have unexpected side-

effects => tests highlight these
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Perl 6 Specification Tests

�A growing suite of tests that Rakudo 

must pass to be able to declare itself as 

a conforming Perl 6 implementation

�Test scripts are written in Perl 6, using 

a Test.pm also written in Perl 6

� Implementations also have their own 

"sanity tests", which test the basic 

features needed to be able to run 

Test.pm
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Example Perl 6 Specification Test File
use v6;
use Test;
plan 27;

#L<S03/Changes to Perl 5 operators/"x (which concatenates repetitions">

is('a' x 3, 'aaa', 'string repeat operator works on single character');
is('ab' x 4, 'abababab', 'string repeat operator works on multiple character');
is(1 x 5, '11111', 'number repeat operator works on number and creates string');
is('' x 6, '', 'repeating an empty string creates an empty string');
is('a' x 0, '', 'repeating zero times produces an empty string');
is('a' x -1, '', 'repeating negative times produces an empty string');

#L<S03/Changes to Perl 5 operators/"and xx (which creates a list)">

my @foo = 'x' xx 10;
is(@foo[0], 'x', 'list repeat operator created correct array');
is(@foo[9], 'x', 'list repeat operator created correct array');
is(+@foo, 10, 'list repeat operator created array of the right size');

...
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Fudge

�Test files are written in Perl 6

�During development of Rakudo, we can 

sometimes only run parts of a test file

�Sometimes we just get the wrong 

answer => can mark the test "todo"

�Other times, it causes a parse error 

or compiler failure => we never get to 

run any tests
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Fudge

� Insert "fudge" directives into a test file

�A pre-processor runs before the test 

suite, comments out the tests and 

inserts calls to "skip"

�Fudge works per implementation, so 

they can each fudge the tests as they 

need to

#?rakudo skip 'unimpl undef++'
my $a = undef;
is($a++, 0, 'undef++ == 0');
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Tests And Passing Tests Over Time

7121 
passing 
spec 
tests
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Oh, so many…

�Not time to discuss in detail even a 

fraction of the Perl 6 features that have 

been added in the last year

�Will pick a few of the most major 

features, as well as areas that have 

seen major advances

�One of them – multiple dispatch – will 

be discussed in my other talk
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Array and Hash Slicing

�Rakudo now supports array and hash 

composers:

� It also lets you get and assign to slices 

of lists and hashes:

my @a = 1,2,3,4,5;

@a[2,3] = @a[3,2];
say @a.perl;    # [1, 2, 4, 3, 5]

%nums<one two> = 10, 20;
say %nums.perl; # {"one" => 10, "two" => 20}

my %nums = one => 1, two => 2;
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Junction Auto-threading

�Junctions now auto-thread properly 

through function and method calls

� In the following example, the sub 

double is called three times, and a new 

junction of the results is created
sub double($x) {

return 2 * $x;
}
my $j = 1 | 2 | 3;
say double($j).perl; # any(2, 4, 6)
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Some meta-operators

�The reduction meta-operator works:

�Various of the infix hyper-operators and 

cross-operators are also implemented:
my @a = 1,2;
my @b = 3,4;
say (@a >>+<< @b).perl; # [4, 6]
my @c = 'a', 'b'; 
say (@a X~ @c).perl; # ["1a", "1b",

#  "2a", "2b"]

my @costs = 49.99, 10.50, 5.23;
say [+] @costs;  # 65.72
say [*] 1..10;   # 3628800 (10 factorial)



The Rakudo Update

Much Progress In OO

�Overall, OO support is now much more 

stable, more conformant with the 

specification and far more complete

�Read-only accessors really are

�Array and hash attributes work

� Initialization of attributes in the class

�Generally, many things that you'd 

expect to Just Work now mostly do
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Role Advances

�Run-time mixing in of roles into existing 

objects now works

�Parametric roles also implemented => 

the Perl 6 way to do generics

role Units {
has Str $.unit is rw;

}
my $x = 42 but Units("cm");
say $x;      # 42
say $x.unit; # cm 

role Array[::TElements] { … }
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Pointy Block Improvements

�Pointy blocks now work as r-values, 

giving you a nice way to write lambdas

�Can also use the syntax for many other 

types of block now too

my $ten_times = -> $s { say $s for 1..10 };
$ten_times("OH HAI"); # 10 lines of output

if try_to_get_input() -> $read {
say "We read $read";

}
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Many More Built-ins

�Many more built-in types, methods and 

functions are now available

�More operators are implemented and 

working

�Some of the IO classes are now in 

place, giving us file IO
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Largely The Same

�The Parrot Compiler Toolkit has had 

various extensions

�However, the overall architecture of the 

compiler is about the same as it was a 

year ago

�The existing set of AST nodes has 

continued to be sufficient

�Toolkit being used for other compilers
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The Perl 6 "Setting"

�The "Setting" is what other languages 

call a prelude: the set of built-in types 

and functions

�Until recently, all in PIR

�We are now doing a two-stage build of 

the compiler:

�Build the core

�Use that to compile the Setting
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Forthcoming Major Parsing Changes

�While the AST and the toolkit beyond 

that stage will stay the same, the 

parsing engine will change substantially 

in the coming months

�Changes needed to fully support the 

official Perl 6 grammar

�Also expected to give a large 

performance increase – parsing today 

is one of our major bottlenecks
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Projects Using 
Rakudo
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November

�Wiki written in Perl 6

�November developers have discovered 

and reported

many bugs

and helped

motivate the

Rakudo team

to add more

features.
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Druid

�A connection-oriented board game
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SVG.pm

�An SVG module for Perl 6 (the 

implementation is beautiful)
use v6;
use SVG;

my $svg =
:width(200), :height(200),
circle => [

:cx(100), :cy(100), :r(50)
]

;

say SVG.serialize($svg);
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Getting Rakudo

�Now hosted in a GIT repository 

git://github.com/rakudo/rakudo.git

�Build it (builds Parrot for you):

�Run it on the command line, with a 

script or in interactive mode

perl Configure.pl --gen-parrot
make perl6

perl6 –e "say 'Hello, world!'"
perl6 script.p6
perl6
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The Rakudo Website

�www.rakudo.org

�Recently improved; now not just a blog
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So really, how 
close are we?
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It won't be 2009…

�Rakudo has made enormous progress 

in the last year, but there's still a lot 

more left to do

�Don't expect to have a production-

ready release in 2009 (2010 is much 

more realistic) �

�Do expect to have Alpha/Beta style 

releases this year ☺
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But you can use Rakudo today!

�The day I wrote these slides, I read a 

post on use.perl.org by someone who 

had just created their first useful Perl 6 

program

"I know this is mind-bogglingly simple, 

but it's now a practical part of my 

development environment for work."
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Get It, Try It, Break It

�Most bugs are discovered by people 

trying to build stuff with Rakudo

�The November wiki project has been 

especially helpful in this regard

�Feedback about what people want and 

need from Rakudo helps motivate the 

compiler team too

�Looking forward to your bug reports ☺
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Дякую!
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Questions?


