
Джонатан Вортингтон

Український воркшоп «Перл мова» 2009

The Rakudo Update

The Rakudo Update

Is it finished yet?

The Rakudo Update

Is it finished yet?
No
Нет

Ні

The Rakudo Update

Will it be finished tomorrow?

The Rakudo Update

Will it be finished tomorrow?
No
Нет

Ні

The Rakudo Update

Will it be finished by Christmas?

The Rakudo Update

Will it be finished by Christmas?

Yes!
Да!
Так!

The Rakudo Update

Will it be finished by Christmas?

Yes!
Да!
Так!

(We just don't know which Christmas…)

The Rakudo Update

One year ago…

The Rakudo Update

The Rakudo Update

The Rakudo Update

Perl 6 will Perl 6 will Perl 6 will Perl 6 will

be the be the be the be the

awesome!awesome!awesome!awesome!

The Rakudo Update

Perl 6 will Perl 6 will Perl 6 will Perl 6 will

be the be the be the be the

awesome!awesome!awesome!awesome!
WTF?! I've WTF?! I've WTF?! I've WTF?! I've

just found just found just found just found

anotheranotheranotheranother bug!bug!bug!bug!

The Rakudo Update

Perl 6 will Perl 6 will Perl 6 will Perl 6 will

be the be the be the be the

awesome!awesome!awesome!awesome!
WTF?! I've WTF?! I've WTF?! I've WTF?! I've

just found just found just found just found

anotheranotheranotheranother bug!bug!bug!bug!

Я хочу

пиво…

The Rakudo Update

A year later…

The Rakudo Update

Overview

�Much more rigorous testing, which has

led to greater stability

�A lot of new features implemented

�A lot of things that we were sort of

cheating on now done correctly

�More people contributing patches

�More people writing Perl 6 programs

and running them on Rakudo

The Rakudo Update

Testing

The Rakudo Update

Testing Really Matters

�Experience has shown that…

�Whenever a new feature is added,

tests must be added at the same time

�Otherwise, it will get broken by some

future change

�Many complex feature interactions

�Changes can have unexpected side-

effects => tests highlight these

The Rakudo Update

Perl 6 Specification Tests

�A growing suite of tests that Rakudo

must pass to be able to declare itself as

a conforming Perl 6 implementation

�Test scripts are written in Perl 6, using

a Test.pm also written in Perl 6

� Implementations also have their own

"sanity tests", which test the basic

features needed to be able to run

Test.pm

The Rakudo Update

Example Perl 6 Specification Test File
use v6;
use Test;
plan 27;

#L<S03/Changes to Perl 5 operators/"x (which concatenates repetitions">

is('a' x 3, 'aaa', 'string repeat operator works on single character');
is('ab' x 4, 'abababab', 'string repeat operator works on multiple character');
is(1 x 5, '11111', 'number repeat operator works on number and creates string');
is('' x 6, '', 'repeating an empty string creates an empty string');
is('a' x 0, '', 'repeating zero times produces an empty string');
is('a' x -1, '', 'repeating negative times produces an empty string');

#L<S03/Changes to Perl 5 operators/"and xx (which creates a list)">

my @foo = 'x' xx 10;
is(@foo[0], 'x', 'list repeat operator created correct array');
is(@foo[9], 'x', 'list repeat operator created correct array');
is(+@foo, 10, 'list repeat operator created array of the right size');

...

The Rakudo Update

Example Perl 6 Specification Test File
use v6;
use Test;
plan 27;

#L<S03/Changes to Perl 5 operators/"x (which concatenates repetitions">

is('a' x 3, 'aaa', 'string repeat operator works on single character');
is('ab' x 4, 'abababab', 'string repeat operator works on multiple character');
is(1 x 5, '11111', 'number repeat operator works on number and creates string');
is('' x 6, '', 'repeating an empty string creates an empty string');
is('a' x 0, '', 'repeating zero times produces an empty string');
is('a' x -1, '', 'repeating negative times produces an empty string');

#L<S03/Changes to Perl 5 operators/"and xx (which creates a list)">

my @foo = 'x' xx 10;
is(@foo[0], 'x', 'list repeat operator created correct array');
is(@foo[9], 'x', 'list repeat operator created correct array');
is(+@foo, 10, 'list repeat operator created array of the right size');

...

The Rakudo Update

Example Perl 6 Specification Test File
use v6;
use Test;
plan 27;

#L<S03/Changes to PerlÂ 5 operators/"x (which concatenates repetitions">

is('a' x 3, 'aaa', 'string repeat operator works on single character');
is('ab' x 4, 'abababab', 'string repeat operator works on multiple character');
is(1 x 5, '11111', 'number repeat operator works on number and creates string');
is('' x 6, '', 'repeating an empty string creates an empty string');
is('a' x 0, '', 'repeating zero times produces an empty string');
is('a' x -1, '', 'repeating negative times produces an empty string');

#L<S03/Changes to PerlÂ 5 operators/"and xx (which creates a list)">

my @foo = 'x' xx 10;
is(@foo[0], 'x', 'list repeat operator created correct array');
is(@foo[9], 'x', 'list repeat operator created correct array');
is(+@foo, 10, 'list repeat operator created array of the right size');

...

The Rakudo Update

Example Perl 6 Specification Test File
use v6;
use Test;
plan 27;

#L<S03/Changes to Perl 5 operators/"x (which concatenates repetitions">

is('a' x 3, 'aaa', 'string repeat operator works on single character');
is('ab' x 4, 'abababab', 'string repeat operator works on multiple character');
is(1 x 5, '11111', 'number repeat operator works on number and creates string');
is('' x 6, '', 'repeating an empty string creates an empty string');
is('a' x 0, '', 'repeating zero times produces an empty string');
is('a' x -1, '', 'repeating negative times produces an empty string');

#L<S03/Changes to Perl 5 operators/"and xx (which creates a list)">

my @foo = 'x' xx 10;
is(@foo[0], 'x', 'list repeat operator created correct array');
is(@foo[9], 'x', 'list repeat operator created correct array');
is(+@foo, 10, 'list repeat operator created array of the right size');

...

The Rakudo Update

Fudge

�Test files are written in Perl 6

�During development of Rakudo, we can

sometimes only run parts of a test file

�Sometimes we just get the wrong

answer => can mark the test "todo"

�Other times, it causes a parse error

or compiler failure => we never get to

run any tests

The Rakudo Update

Fudge

� Insert "fudge" directives into a test file

�A pre-processor runs before the test

suite, comments out the tests and

inserts calls to "skip"

�Fudge works per implementation, so

they can each fudge the tests as they

need to

#?rakudo skip 'unimpl undef++'
my $a = undef;
is($a++, 0, 'undef++ == 0');

The Rakudo Update

Tests And Passing Tests Over Time

7121
passing
spec
tests

The Rakudo Update

Features

The Rakudo Update

Oh, so many…

�Not time to discuss in detail even a

fraction of the Perl 6 features that have

been added in the last year

�Will pick a few of the most major

features, as well as areas that have

seen major advances

�One of them – multiple dispatch – will

be discussed in my other talk

The Rakudo Update

Array and Hash Slicing

�Rakudo now supports array and hash

composers:

� It also lets you get and assign to slices

of lists and hashes:

my @a = 1,2,3,4,5;

@a[2,3] = @a[3,2];
say @a.perl; # [1, 2, 4, 3, 5]

%nums<one two> = 10, 20;
say %nums.perl; # {"one" => 10, "two" => 20}

my %nums = one => 1, two => 2;

The Rakudo Update

Junction Auto-threading

�Junctions now auto-thread properly

through function and method calls

� In the following example, the sub

double is called three times, and a new

junction of the results is created
sub double($x) {

return 2 * $x;
}
my $j = 1 | 2 | 3;
say double($j).perl; # any(2, 4, 6)

The Rakudo Update

Some meta-operators

�The reduction meta-operator works:

�Various of the infix hyper-operators and

cross-operators are also implemented:
my @a = 1,2;
my @b = 3,4;
say (@a >>+<< @b).perl; # [4, 6]
my @c = 'a', 'b';
say (@a X~ @c).perl; # ["1a", "1b",

"2a", "2b"]

my @costs = 49.99, 10.50, 5.23;
say [+] @costs; # 65.72
say [*] 1..10; # 3628800 (10 factorial)

The Rakudo Update

Much Progress In OO

�Overall, OO support is now much more

stable, more conformant with the

specification and far more complete

�Read-only accessors really are

�Array and hash attributes work

� Initialization of attributes in the class

�Generally, many things that you'd

expect to Just Work now mostly do

The Rakudo Update

Role Advances

�Run-time mixing in of roles into existing

objects now works

�Parametric roles also implemented =>

the Perl 6 way to do generics

role Units {
has Str $.unit is rw;

}
my $x = 42 but Units("cm");
say $x; # 42
say $x.unit; # cm

role Array[::TElements] { … }

The Rakudo Update

Pointy Block Improvements

�Pointy blocks now work as r-values,

giving you a nice way to write lambdas

�Can also use the syntax for many other

types of block now too

my $ten_times = -> $s { say $s for 1..10 };
$ten_times("OH HAI"); # 10 lines of output

if try_to_get_input() -> $read {
say "We read $read";

}

The Rakudo Update

Many More Built-ins

�Many more built-in types, methods and

functions are now available

�More operators are implemented and

working

�Some of the IO classes are now in

place, giving us file IO

The Rakudo Update

Architecture

The Rakudo Update

Largely The Same

�The Parrot Compiler Toolkit has had

various extensions

�However, the overall architecture of the

compiler is about the same as it was a

year ago

�The existing set of AST nodes has

continued to be sufficient

�Toolkit being used for other compilers

The Rakudo Update

The Perl 6 "Setting"

�The "Setting" is what other languages

call a prelude: the set of built-in types

and functions

�Until recently, all in PIR

�We are now doing a two-stage build of

the compiler:

�Build the core

�Use that to compile the Setting

The Rakudo Update

Forthcoming Major Parsing Changes

�While the AST and the toolkit beyond

that stage will stay the same, the

parsing engine will change substantially

in the coming months

�Changes needed to fully support the

official Perl 6 grammar

�Also expected to give a large

performance increase – parsing today

is one of our major bottlenecks

The Rakudo Update

Projects Using
Rakudo

The Rakudo Update

November

�Wiki written in Perl 6

�November developers have discovered

and reported

many bugs

and helped

motivate the

Rakudo team

to add more

features.

The Rakudo Update

Druid

�A connection-oriented board game

The Rakudo Update

SVG.pm

�An SVG module for Perl 6 (the

implementation is beautiful)
use v6;
use SVG;

my $svg =
:width(200), :height(200),
circle => [

:cx(100), :cy(100), :r(50)
]

;

say SVG.serialize($svg);

The Rakudo Update

Getting Rakudo

The Rakudo Update

Getting Rakudo

�Now hosted in a GIT repository

git://github.com/rakudo/rakudo.git

�Build it (builds Parrot for you):

�Run it on the command line, with a

script or in interactive mode

perl Configure.pl --gen-parrot
make perl6

perl6 –e "say 'Hello, world!'"
perl6 script.p6
perl6

The Rakudo Update

The Rakudo Website

�www.rakudo.org

�Recently improved; now not just a blog

The Rakudo Update

So really, how
close are we?

The Rakudo Update

It won't be 2009…

�Rakudo has made enormous progress

in the last year, but there's still a lot

more left to do

�Don't expect to have a production-

ready release in 2009 (2010 is much

more realistic) �

�Do expect to have Alpha/Beta style

releases this year ☺

The Rakudo Update

But you can use Rakudo today!

�The day I wrote these slides, I read a

post on use.perl.org by someone who

had just created their first useful Perl 6

program

"I know this is mind-bogglingly simple,

but it's now a practical part of my

development environment for work."

The Rakudo Update

Get It, Try It, Break It

�Most bugs are discovered by people

trying to build stuff with Rakudo

�The November wiki project has been

especially helpful in this regard

�Feedback about what people want and

need from Rakudo helps motivate the

compiler team too

�Looking forward to your bug reports ☺

The Rakudo Update

Дякую!

The Rakudo Update

Questions?

