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WTF?!
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Single Dispatch

�We're used to writing subroutines with a 

name…

�And calling it by its name, passing any 

parameters

# Perl 6 sub taking one parameter $name

sub greet($name) {

say "Ahoj, $name!";

}

greet('Anna');  # Ahoj, Anna!
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Single Dispatch

� It's easy

�Of course, sometimes we want to write 

things that are a bit more flexible in 

what parameters they need

�For example, optional parameters
sub greet($name, $greeting = 'Ahoj') {

say "$greeting, $name!";

}

greet('Anna');            # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"
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Multiple Dispatch

�Takes the idea of determining the 

behaviour by the arguments that are 

passed a step further

�We write multiple routines with the 

same name, but different signatures

�We let the runtime engine analyse the 

parameters that we are passing and 

call the best routine (known as the best 

candidate).
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Multiple Dispatch – New In Perl 6!

�Multiple dispatch is one of the new 

features built in to Perl 6

�Not just an obscure feature, but actually 

right at the heart of the language

�Operator overloading in Perl 6 will be 

done by multi-dispatch routines

�(In fact, all of the built-in operators 

are invoked by a multi-dispatch.)
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Dispatch By Arity

�Arity = number of arguments that a 

routine takes

�Could do the previous example as:
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna');            # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"
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A Bit About Types

� In Perl 6, values know what kind of 

thing they are

� Including your own classes

say 42.WHAT;              # Int

say "пива".WHAT; # Str

sub answer { return 42 }

say &answer.WHAT;         # Sub

class Dog { … }

my $fido = Dog.new();

say $fido.WHAT;           # Dog
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A Bit About Types

�We can refer to types in our code by 

name

�For example we can declare a variable 

can only hold certain types of thing

�Again, this works with types you have 

defined in your own code too 

my Int $x = 42;       # OK, 42 isa Int

$x = 100;             # OK, 100 isa Int

$x = "CHEEZBURGER";   # Error
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Type-Based Dispatch

�We can write types in a signature

�They are used to help decide which 

candidate to call
multi sub double(Num $x) {

return 2 * $x;

}

multi sub double(Str $x) {

return "$x $x";

}

say double(21);      # 42

say double("hej");   # hej hej
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Type-Based Dispatch

�Paper/Scissor/Stone is easy now
class Paper   { }

class Scissor { }

class Stone   { }

multi win(Paper $a,   Stone $b)   { 1 }

multi win(Scissor $a, Paper $b)   { 1 }

multi win(Stone $a,   Scissor $b) { 1 }

multi win(Any $a,     Any $b)     { 0 }   

say win(Paper.new, Scissor.new);  # 0

say win(Stone.new, Stone.new);    # 0

say win(Paper.new, Stone.new);    # 1
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Type Hierarchies in Multi Dispatch

� It's quite clear to see what will happen 

in the previous examples

�When we have a more complex type 

hierarchy, things are less simple…

�…especially when we may have 

different parameters belonging to 

different or related type hierarchies…

�…got a headache yet?
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Type Hierarchies in Multi Dispatch

� It's all based upon the idea of type 

narrowness

�Consider classes in an

inheritance relationship

�Here, we say that Beer is

a narrower type than Drink,

and Budvar is a narrower type than 

Beer

Drink

Beer

Budvar
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Type Hierarchies in Multi Dispatch

�This works for one parameter, but what 

about candidates overall?

�We say that one candidate is narrower 

than another when:

�At least one parameter is narrower

�The rest of the parameters are either 

narrower or tied (that is, the same 

type or not related types)
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Type Hierarchies in Multi Dispatch

�Some one-parameter examples

multi drink(Beer $glass) { … }

multi drink(Budvar $glass) { … }

~ is narrower than ~

multi drink(Beer $glass) { … }

multi drink(Beer $glass) { … }

~ is tied with (same type) ~

multi drink(Budvar $glass) { … }

multi drink(Milk $glass) { … }

~ is tied with (unrelated type) ~
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Type Hierarchies in Multi Dispatch

�Some trickier examples

multi drink(Beer $a,   Beer $b)   { … }

multi drink(Budvar $a, Beer $b)   { … }

~ is narrower than ~

multi drink(Beer $a,   Milk $b)   { … }

multi drink(Budvar $a, Beer $b)   { … }

~ is narrower than ~

multi drink(Beer $a,   Budvar $b) { … }

multi drink(Budbar $a, Beer $b)   { … }

~ is tied with ~
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Type Hierarchies in Multi Dispatch

�We use narrowness to produce a 

candidate ordering:

�Compare every candidate for 

narrowness with every other 

candidate

�Build a graph with arrows from A to B 

when A is narrower than B

�Do a topological sort
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Type Hierarchies in Multi Dispatch

�Things to notice about this algorithm 

that may not be immediately obvious

�We do the candidate sorting once, 

not per call (so we don't have to 

compute the ordering per call, which 

would really hurt performance)

� It is completely independent of 

parameter ordering (the first and last 

parameters have equal importance)
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When Dispatch 
Fails
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Dispatch Failures

�Multiple dispatch can fail in a couple of 

ways

�When all candidates have been 

considered, and none of them accept 

the parameters we have passed

�When we have two or more 

candidates that accept the 

parameters and have no way to 

decide which one is better
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No Applicable Candidates

�The following program will give an error 

saying that there are no applicable 

candidates
multi sub double(Num $x) {

return 2 * $x;

}

multi sub double(Str $x) {

return "$x $x";

}

double(1..10); # 1..10 is a Range object
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Ambiguous Candidates

�This one fails due to ambiguity

�But helpfully tells you what conflicted

multi sub say_sum(Num $x, Int $y) {

say $x + $y;

}

multi sub say_sum(Int $x, Num $y) {

say $x + $y;

}

say_sum(15, 27);

Ambiguous dispatch to multi 'say_sum'.

Ambiguous candidates had signatures:

:(Num $x, Int $y)

:(Int $x, Num $y)
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Tie-Breaking 
With Subtypes
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Introducing Subtypes

� In Perl 6, you can take an existing type 

and "refine" it

�You can also write an anonymous 

refinement on a sub parameter

subset PositveInt of Int where { $_ > 0 }

sub divide(Num $a,

Num $b where { $^n != 0 }) {

return $a / $b;

}

say divide(126, 3); # 42

say divide(100, 0); # Type check failure
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Subtypes In Multiple Dispatch

� In multiple dispatch, subtypes act as 

"tie-breakers"

�First, we narrow down the possible 

candidates based upon the role or 

class they expect the parameter to 

inherit from or do

�Then, if we have multiple candidates 

left, we use the subtypes to try and 

pick a winner
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Subtypes In Multiple Dispatch

�Here is an example of using subtypes 

to distinguish between two candidates
multi say_short(Str $x) {

say $x;

}

multi say_short(Str $x 

where { .chars >= 12 }) {

say substr($x, 0, 10) ~ '...';

}

say_short("Beer!");         # Beer!

say_short("BeerBeerBeer!"); # BeerBeerBe...
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If all else fails…
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The is default Trait

� If you are left with multiple ambiguous 
candidates, you may also use the is 

default trait to disambiguate them

�This should probably be seen as 

something of a last resort, and only 

holds up as long as someone else 

doesn't write a default of their own!

multi foo(Int $x) { 1 }

multi foo(Int $x) is default { 2 }

say foo(1); # 2



There's More Than One Way To Dispatch It

Writing a proto

�You can also write a fallback that is 

called if there is an ambiguous dispatch 

or one that no candidates match

�This is called a proto; we call the one 

most immediately in scope at the time 

of the call
proto say_short(Any $x) {

# Stringify and re-dispatch.

say_short(~$x);

}
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Дякую!
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Questions?


