
Джонатан Вортингтон

Український воркшоп «Перл мова» 2009

There's More Than One

Way To Dispatch It

There's More Than One Way To Dispatch It

Topological sorting
of a directed acyclic
graph constructed

from a type
narrowness analysis.

There's More Than One Way To Dispatch It

WTF?!

There's More Than One Way To Dispatch It

Single Dispatch

�We're used to writing subroutines with a

name…

�And calling it by its name, passing any

parameters

Perl 6 sub taking one parameter $name

sub greet($name) {

say "Ahoj, $name!";

}

greet('Anna'); # Ahoj, Anna!

There's More Than One Way To Dispatch It

Single Dispatch

� It's easy

�Of course, sometimes we want to write

things that are a bit more flexible in

what parameters they need

�For example, optional parameters
sub greet($name, $greeting = 'Ahoj') {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

There's More Than One Way To Dispatch It

Multiple Dispatch

�Takes the idea of determining the

behaviour by the arguments that are

passed a step further

�We write multiple routines with the

same name, but different signatures

�We let the runtime engine analyse the

parameters that we are passing and

call the best routine (known as the best

candidate).

There's More Than One Way To Dispatch It

Multiple Dispatch – New In Perl 6!

�Multiple dispatch is one of the new

features built in to Perl 6

�Not just an obscure feature, but actually

right at the heart of the language

�Operator overloading in Perl 6 will be

done by multi-dispatch routines

�(In fact, all of the built-in operators

are invoked by a multi-dispatch.)

There's More Than One Way To Dispatch It

Arity

There's More Than One Way To Dispatch It

Dispatch By Arity

�Arity = number of arguments that a

routine takes

�Could do the previous example as:
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

There's More Than One Way To Dispatch It

Dispatch By Arity

�Arity = number of arguments that a

routine takes

�Could do the previous example as:
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

1

There's More Than One Way To Dispatch It

Dispatch By Arity

�Arity = number of arguments that a

routine takes

�Could do the previous example as:
multi sub greet($name) {

say "Ahoj, $name!";

}

multi sub greet($name, $greeting) {

say "$greeting, $name!";

}

greet('Anna'); # Ahoj Anna

greet('Лена', 'Привет '); # Привет, Лена"

2

There's More Than One Way To Dispatch It

Type-Based
Dispatch

There's More Than One Way To Dispatch It

A Bit About Types

� In Perl 6, values know what kind of

thing they are

� Including your own classes

say 42.WHAT; # Int

say "пива".WHAT; # Str

sub answer { return 42 }

say &answer.WHAT; # Sub

class Dog { … }

my $fido = Dog.new();

say $fido.WHAT; # Dog

There's More Than One Way To Dispatch It

A Bit About Types

�We can refer to types in our code by

name

�For example we can declare a variable

can only hold certain types of thing

�Again, this works with types you have

defined in your own code too

my Int $x = 42; # OK, 42 isa Int

$x = 100; # OK, 100 isa Int

$x = "CHEEZBURGER"; # Error

There's More Than One Way To Dispatch It

Type-Based Dispatch

�We can write types in a signature

�They are used to help decide which

candidate to call
multi sub double(Num $x) {

return 2 * $x;

}

multi sub double(Str $x) {

return "$x $x";

}

say double(21); # 42

say double("hej"); # hej hej

There's More Than One Way To Dispatch It

Type-Based Dispatch

�Paper/Scissor/Stone is easy now
class Paper { }

class Scissor { }

class Stone { }

multi win(Paper $a, Stone $b) { 1 }

multi win(Scissor $a, Paper $b) { 1 }

multi win(Stone $a, Scissor $b) { 1 }

multi win(Any $a, Any $b) { 0 }

say win(Paper.new, Scissor.new); # 0

say win(Stone.new, Stone.new); # 0

say win(Paper.new, Stone.new); # 1

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

� It's quite clear to see what will happen

in the previous examples

�When we have a more complex type

hierarchy, things are less simple…

�…especially when we may have

different parameters belonging to

different or related type hierarchies…

�…got a headache yet?

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

� It's all based upon the idea of type

narrowness

�Consider classes in an

inheritance relationship

�Here, we say that Beer is

a narrower type than Drink,

and Budvar is a narrower type than

Beer

Drink

Beer

Budvar

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

�This works for one parameter, but what

about candidates overall?

�We say that one candidate is narrower

than another when:

�At least one parameter is narrower

�The rest of the parameters are either

narrower or tied (that is, the same

type or not related types)

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

�Some one-parameter examples

multi drink(Beer $glass) { … }

multi drink(Budvar $glass) { … }

~ is narrower than ~

multi drink(Beer $glass) { … }

multi drink(Beer $glass) { … }

~ is tied with (same type) ~

multi drink(Budvar $glass) { … }

multi drink(Milk $glass) { … }

~ is tied with (unrelated type) ~

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

�Some trickier examples

multi drink(Beer $a, Beer $b) { … }

multi drink(Budvar $a, Beer $b) { … }

~ is narrower than ~

multi drink(Beer $a, Milk $b) { … }

multi drink(Budvar $a, Beer $b) { … }

~ is narrower than ~

multi drink(Beer $a, Budvar $b) { … }

multi drink(Budbar $a, Beer $b) { … }

~ is tied with ~

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

�We use narrowness to produce a

candidate ordering:

�Compare every candidate for

narrowness with every other

candidate

�Build a graph with arrows from A to B

when A is narrower than B

�Do a topological sort

There's More Than One Way To Dispatch It

Type Hierarchies in Multi Dispatch

�Things to notice about this algorithm

that may not be immediately obvious

�We do the candidate sorting once,

not per call (so we don't have to

compute the ordering per call, which

would really hurt performance)

� It is completely independent of

parameter ordering (the first and last

parameters have equal importance)

There's More Than One Way To Dispatch It

When Dispatch
Fails

There's More Than One Way To Dispatch It

Dispatch Failures

�Multiple dispatch can fail in a couple of

ways

�When all candidates have been

considered, and none of them accept

the parameters we have passed

�When we have two or more

candidates that accept the

parameters and have no way to

decide which one is better

There's More Than One Way To Dispatch It

No Applicable Candidates

�The following program will give an error

saying that there are no applicable

candidates
multi sub double(Num $x) {

return 2 * $x;

}

multi sub double(Str $x) {

return "$x $x";

}

double(1..10); # 1..10 is a Range object

There's More Than One Way To Dispatch It

Ambiguous Candidates

�This one fails due to ambiguity

�But helpfully tells you what conflicted

multi sub say_sum(Num $x, Int $y) {

say $x + $y;

}

multi sub say_sum(Int $x, Num $y) {

say $x + $y;

}

say_sum(15, 27);

Ambiguous dispatch to multi 'say_sum'.

Ambiguous candidates had signatures:

:(Num $x, Int $y)

:(Int $x, Num $y)

There's More Than One Way To Dispatch It

Tie-Breaking
With Subtypes

There's More Than One Way To Dispatch It

Introducing Subtypes

� In Perl 6, you can take an existing type

and "refine" it

�You can also write an anonymous

refinement on a sub parameter

subset PositveInt of Int where { $_ > 0 }

sub divide(Num $a,

Num $b where { $^n != 0 }) {

return $a / $b;

}

say divide(126, 3); # 42

say divide(100, 0); # Type check failure

There's More Than One Way To Dispatch It

Subtypes In Multiple Dispatch

� In multiple dispatch, subtypes act as

"tie-breakers"

�First, we narrow down the possible

candidates based upon the role or

class they expect the parameter to

inherit from or do

�Then, if we have multiple candidates

left, we use the subtypes to try and

pick a winner

There's More Than One Way To Dispatch It

Subtypes In Multiple Dispatch

�Here is an example of using subtypes

to distinguish between two candidates
multi say_short(Str $x) {

say $x;

}

multi say_short(Str $x

where { .chars >= 12 }) {

say substr($x, 0, 10) ~ '...';

}

say_short("Beer!"); # Beer!

say_short("BeerBeerBeer!"); # BeerBeerBe...

There's More Than One Way To Dispatch It

If all else fails…

There's More Than One Way To Dispatch It

The is default Trait

� If you are left with multiple ambiguous
candidates, you may also use the is

default trait to disambiguate them

�This should probably be seen as

something of a last resort, and only

holds up as long as someone else

doesn't write a default of their own!

multi foo(Int $x) { 1 }

multi foo(Int $x) is default { 2 }

say foo(1); # 2

There's More Than One Way To Dispatch It

Writing a proto

�You can also write a fallback that is

called if there is an ambiguous dispatch

or one that no candidates match

�This is called a proto; we call the one

most immediately in scope at the time

of the call
proto say_short(Any $x) {

Stringify and re-dispatch.

say_short(~$x);

}

There's More Than One Way To Dispatch It

Дякую!

There's More Than One Way To Dispatch It

Questions?

