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Perl 6 Hacker

Rakudo core developer

Focus on the object model, 

type system, multiple 

dispatch and signature 

handling
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Traveller

I love to travel. Often Perl 

workshops are a good excuse.
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Beer Drinker

Beer is tasty.

I drink it.

\/
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The Perl 6

Project
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Take all of the 

things that make 

Perl great.
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Learn from the 

things that don’t 

work so well in

Perl 5.
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Be inspired by the 

latest and greatest 

ideas from other 

languages and 

language research.
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Build a new Perl.
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Perl 6

=

Language 

specification

+

Official test suite
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No official 

implementation.
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Rakudo is the most 

complete Perl 6 

implementation today.
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Different use 

cases have 

different needs
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I want a one-liner 

that computes the 

mean of the 

values in the third 

column in foo.txt.
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I want to write a 

large web app to 

manage train 

ticket sales for a 

whole country.
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I want a little tool 

that downloads 

and processes a 

file in a weird 

format once a day.
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I want to work 

with a huge set of 

bioinformatics 

data and do some 

analysis on it.
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In Perl 6, we've 

tried to make things 

better for all of 

these use cases.
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For the Really

Little Tasks
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Perl 6 has a built-in 

REPL.

> 15 + 27

42
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Perl 6 has a built-in 

REPL.

> 15 + 27

42

> <beer vodka whisky>.pick

beer
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Perl 6 has a built-in 

REPL.

> 15 + 27

42

> <beer vodka whisky>.pick

beer

> (1, 1, *+* ... Inf)[20]

10946
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Pipeline operator is great 

for processing lists of data 

quickly and clearly

> dir ==> grep /\.pm$/

A.pm B.pm Foo.pm NativeCall.pm Test.pm x.pm
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Pipeline operator is great 

for processing lists of data 

quickly and clearly

> dir ==> grep /\.pm$/

A.pm B.pm Foo.pm NativeCall.pm Test.pm x.pm

cat essay.txt | perl6 -e

'$*IN.slurp.comb(/\w+/) ==> sort *.chars

==> reverse ==> join "\n" ==> say' | head
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slurp reads a file into a scalar

lines reads the lines of a file 

into an array

> dir ==> grep /\.pm$/ ==> sort { +lines($_) }

B.pm x.pm A.pm Foo.pm NativeCall.pm Test.pm

> dir ==> grep /\.pm$/ ==>

sort { slurp($_).chars }

B.pm x.pm Foo.pm A.pm NativeCall.pm Test.pm



Perl 6: For Little Tools and Large Applications

Many meta-operators

save writing loops

cat example.txt | perl6 -e

"say [max] $*IN.slurp.comb(/\d+/)"
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Meta-operators save 

writing a lot of loops

cat example.txt | perl6 -e

"say [max] $*IN.slurp.comb(/\d+/)"

cat data.txt | perl6 -e

"say [+] $*IN.lines.map: { .words[2] }"
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Meta-operators save 

writing a lot of loops

cat example.txt | perl6 -e

"say [max] $*IN.slurp.comb(/\d+/)"

cat data.txt | perl6 -e

"say [+] $*IN.lines.map: { .words[2] }"

perl6 -e "[+] lines(‘d1‘).map: { .words[2] }

>>-<<

lines(‘d2').map: { .words[2] }"
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For The

Small Tools
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Perl 6 supports writing a 

MAIN subroutine that is 

invoked at startup.

Automatically maps 

arguments to parameters 

and generates usage 

instructions.
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sub MAIN($number, Bool :$upto) {

my @fib := (1, 1, *+* ... Inf);

if $upto {

say join ',', @fib[0 ..^ $number];

}

else {

say @fib[$number - 1];

}

}

$ perl6 fib.pl 10

55
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sub MAIN($number, Bool :$upto) {

my @fib := (1, 1, *+* ... Inf);

if $upto {

say join ',', @fib[0 ..^ $number];

}

else {

say @fib[$number - 1];

}

}

$ perl6 fib.pl --upto 10

1,1,2,3,5,8,13,21,34,55
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sub MAIN($number, Bool :$upto) {

my @fib := (1, 1, *+* ... Inf);

if $upto {

say join ',', @fib[0 ..^ $number];

}

else {

say @fib[$number - 1];

}

}

$ perl6 fib.pl

Usage:

fib.pl [--upto] number
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Multiple dispatch means you can 

write multiple subs with the 

same name but taking different 

numbers or types of parameters.

multi sub todo($reason, $count) {

$todo_upto_test_num = $num_of_tests_run + $count;

$todo_reason = '# TODO ' ~ $reason;

}

multi sub todo($reason) {

$todo_upto_test_num = $num_of_tests_run + 1;

$todo_reason = '# TODO ' ~ $reason;

}
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Can write multiple MAIN subs

multi sub MAIN('send', $filename) {

…

}

multi sub MAIN('fetch', $filename) {

…

}

multi sub MAIN('compare', $file1, $file2) {

…

}

$ perl6 util.p6

Usage:

util.p6 send filename

or

util.p6 fetch filename

or

util.p6 compare file1 file2
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When working with all but the 

simplest data files, often need to 

do some parsing

Perl 6 grammars allow you to 

write re-usable parsers

Get back a tree of match objects 

 have a data structure to start 

looking into
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Write a script that works out 

the country we sold the most 

trips to today.

Russia

Vladivostok : 43.131621,131.923828 : 4

Ulan Ude : 51.841624,107.608101 : 2

Saint Petersburg : 59.939977,30.315785 : 10

Norway

Oslo : 59.914289,10.738739 : 2

Bergen : 60.388533,5.331856 : 4

Ukraine

Kiev : 50.456001,30.50384 : 3

Switzerland

Wengen : 46.608265,7.922065 : 3

Bern : 46.949076,7.448151 : 1

...
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What a lovely non-

standard file format.

Let's write a grammar 

for it!
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grammar SalesExport {

… 

}
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grammar SalesExport {

token TOP { ^ <country>+ $ } 

… 

}



Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

… 

}

Russia

Vladivostok : 43.131621,131.923828 : 4

Ulan Ude : 51.841624,107.608101 : 2

Saint Petersburg : 59.939977,30.315785 : 10



Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

…

} 

… 

}

Vladivostok : 43.131621,131.923828 : 4
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grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

…

} 

… 

}

Vladivostok : 43.131621,131.923828 : 4
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grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

} 

… 

}

Vladivostok : 43.131621,131.923828 : 4
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grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

token name { \w+ [ \s \w+ ]* }

… 

}
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grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

token name { \w+ [ \s \w+ ]* }

token num { '-'? \d+ [\.\d+]? }

token integer { '-'? \d+ }

}
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grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

token name { \w+ [ \s \w+ ]* }

token num { '-'? \d+ [\.\d+]? }

token integer { '-'? \d+ }

}
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Now we can turn any file 

in this format into a data 

structure.

Easy to work with 

structured data.
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my $parsed = SalesExport.parsefile('dump.txt');

… 
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

… 

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

… 

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

… 

});

… 

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+]

});

… 

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>

});

… 

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>».<sales>

});

… 

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>».<sales>

});

say "Most popular today: $top<name>";

}

else {

die "Parse error!";

}
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my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>».<sales>

});

say "Most popular today: $top<name>";

}

else {

die "Parse error!";

}
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Grammars go with being a 

glue language  even 

easier to get data into a 

program.

Perl 6 also makes it easier 

to interact with native 

libraries.
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use NativeCall;

…

With NativeCall module:
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use NativeCall;

sub mysql_real_connect(

OpaquePointer $mysql_client, Str $host,

Str $user, Str $password, Str $database,

Int $port, Str $socket, Int $flag)

returns OpaquePointer

{ ... }

With NativeCall module:

1. Write a stub subroutine with a signature
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use NativeCall;

sub mysql_real_connect(

OpaquePointer $mysql_client, Str $host,

Str $user, Str $password, Str $database,

Int $port, Str $socket, Int $flag)

returns OpaquePointer

is native('libmysqlclient‘)

{ ... }

With NativeCall module:

1. Write a stub subroutine with a signature

2. Mark it as coming from a native library
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use NativeCall;

sub mysql_real_connect(

OpaquePointer $mysql_client, Str $host,

Str $user, Str $password, Str $database,

Int $port, Str $socket, Int $flag)

returns OpaquePointer

is native('libmysqlclient‘)

{ ... }

With NativeCall module:

1. Write a stub subroutine with a signature

2. Mark it as coming from a native library

3. Profit!
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For the Large 

Applications
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If you've used Moose, 

you will probably find 

the Perl 6 object model 

easy to start using.

Different syntax, but a 

lot of the same 

keywords and concepts.
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class Beer {

has $!name;

method describe() {

say "I'm drinking $!name";

}

}

Creating and using a 

class is quick and easy.

my $pint = Beer.new(name => 'Tuborg');

$pint.describe();
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class Dog {

has $.name is rw;

has $.color;

}

Attributes are private; 

declarative accessor syntax.

my $pet = Dog.new(

name => 'Spot', color => 'Black'

);

$pet.name = 'Fido';   # OK

$pet.color = 'White'; # Fails
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Perl 6 supports (multiple) 

inheritance.

However, multiple 

inheritance has issues 

(e.g. diamond problem), 

and single inheritance 

limits re-use.
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As well as classes, the 

Perl 6 object model 

includes support for 

roles.
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A role can have attributes

and methods, but unlike a 

class is not intended to be 

used on its own.

Instead one or more roles 

are composed into a class.
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role Logging {

method log($message) {

my $fh = open('log', :a);

$fh.say($message);

$fh.close;

}

}

class MailSender does Logging {

…

}
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Methods and attributes 

are "copied" into the 

class, as if they were 

declared there.

If two roles try to supply a 

method with the same 

name, you get a compile 

time error.
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role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

}
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Such conflicts can be 

resolved by:

Writing a method in the class 

that decides what to do

or

Having a proto method in the 

class (which forces the two to 

become make them multis)
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role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

method go-to-bar() {

self.Gymnastics::go-to-bar();

}

}
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Also provides…

Inheritance

Delegation

Constructors

Deferral to parents 

Introspection 

Meta-programming
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Perl 6 allows you to add type 

constraints to your variables, 

parameters, attributes, etc.

Enforced at runtime at latest, 

but a smart compiler may 

complain at compile time if it 

detects code that could 

never possibly work
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sub show_dist(Str $from, Str $to, Int $kms) {

say "From $from to $to is $kms km.";

}

show_dist('Oslo', 'Lund', 495);

show_dist(495, 'Oslo', 'Lund');

Typed Parameters

Can restrict a parameter to only 

accept arguments of a certain type.

From Oslo to Lund is 495 km.

Nominal type check failed for parameter '$from'; expected Str

but got Int instead

in 'show_dist' at line 1:test.p6

in main program body at line 5:test.p6
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Benefits Today

Type annotations allow you to 

add more checks and balances 

into your application, so you can 

be sure nothing is going awry.

Also can serve as good 

documentation.
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Gradual Typing

The compiler will be able to 

make use of type information to 

emit more optimal code (a 

current work in progress)

The compiler will be able to do 

more checks for you at compile 

time and flag up problems
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No extra 

type 

information 

provided

Fully 

Statically 

typed 

program

The compiler lets you 

choose how much 

type information to 

provide

and

tries to give you more 

benefits as give it 

more information to 

work with
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Conclusions
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Perl 6 tries to be good 

for little tools and for 

large applications.
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Not all features are 

applicable to both.
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Give developers a 

choice where they 

place themselves on 

the prototype <->

production scale.
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Provide migration 

paths from "quick 

hack" to "good code" 

without switching 

language.
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Thank You!
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Questions?


