
Jonathan Worthington

Perl 6: For Little Tools and

Large Applications

Perl 6: For Little Tools and Large Applications

.WHO

Perl 6: For Little Tools and Large Applications

Perl 6 Hacker

Rakudo core developer

Focus on the object model,

type system, multiple

dispatch and signature

handling

Perl 6: For Little Tools and Large Applications

Traveller

I love to travel. Often Perl

workshops are a good excuse.

Perl 6: For Little Tools and Large Applications

Beer Drinker

Beer is tasty.

I drink it.

\/

Perl 6: For Little Tools and Large Applications

The Perl 6

Project

Perl 6: For Little Tools and Large Applications

Take all of the

things that make

Perl great.

Perl 6: For Little Tools and Large Applications

Learn from the

things that don’t

work so well in

Perl 5.

Perl 6: For Little Tools and Large Applications

Be inspired by the

latest and greatest

ideas from other

languages and

language research.

Perl 6: For Little Tools and Large Applications

Build a new Perl.

Perl 6: For Little Tools and Large Applications

Perl 6

=

Language

specification

+

Official test suite

Perl 6: For Little Tools and Large Applications

No official

implementation.

Perl 6: For Little Tools and Large Applications

Rakudo is the most

complete Perl 6

implementation today.

Perl 6: For Little Tools and Large Applications

Different use

cases have

different needs

Perl 6: For Little Tools and Large Applications

I want a one-liner

that computes the

mean of the

values in the third

column in foo.txt.

Perl 6: For Little Tools and Large Applications

I want to write a

large web app to

manage train

ticket sales for a

whole country.

Perl 6: For Little Tools and Large Applications

I want a little tool

that downloads

and processes a

file in a weird

format once a day.

Perl 6: For Little Tools and Large Applications

I want to work

with a huge set of

bioinformatics

data and do some

analysis on it.

Perl 6: For Little Tools and Large Applications

In Perl 6, we've

tried to make things

better for all of

these use cases.

Perl 6: For Little Tools and Large Applications

For the Really

Little Tasks

Perl 6: For Little Tools and Large Applications

Perl 6 has a built-in

REPL.

> 15 + 27

42

Perl 6: For Little Tools and Large Applications

Perl 6 has a built-in

REPL.

> 15 + 27

42

> <beer vodka whisky>.pick

beer

Perl 6: For Little Tools and Large Applications

Perl 6 has a built-in

REPL.

> 15 + 27

42

> <beer vodka whisky>.pick

beer

> (1, 1, *+* ... Inf)[20]

10946

Perl 6: For Little Tools and Large Applications

Pipeline operator is great

for processing lists of data

quickly and clearly

> dir ==> grep /\.pm$/

A.pm B.pm Foo.pm NativeCall.pm Test.pm x.pm

Perl 6: For Little Tools and Large Applications

Pipeline operator is great

for processing lists of data

quickly and clearly

> dir ==> grep /\.pm$/

A.pm B.pm Foo.pm NativeCall.pm Test.pm x.pm

cat essay.txt | perl6 -e

'$*IN.slurp.comb(/\w+/) ==> sort *.chars

==> reverse ==> join "\n" ==> say' | head

Perl 6: For Little Tools and Large Applications

slurp reads a file into a scalar

lines reads the lines of a file

into an array

> dir ==> grep /\.pm$/ ==> sort { +lines($_) }

B.pm x.pm A.pm Foo.pm NativeCall.pm Test.pm

> dir ==> grep /\.pm$/ ==>

sort { slurp($_).chars }

B.pm x.pm Foo.pm A.pm NativeCall.pm Test.pm

Perl 6: For Little Tools and Large Applications

Many meta-operators

save writing loops

cat example.txt | perl6 -e

"say [max] $*IN.slurp.comb(/\d+/)"

Perl 6: For Little Tools and Large Applications

Meta-operators save

writing a lot of loops

cat example.txt | perl6 -e

"say [max] $*IN.slurp.comb(/\d+/)"

cat data.txt | perl6 -e

"say [+] $*IN.lines.map: { .words[2] }"

Perl 6: For Little Tools and Large Applications

Meta-operators save

writing a lot of loops

cat example.txt | perl6 -e

"say [max] $*IN.slurp.comb(/\d+/)"

cat data.txt | perl6 -e

"say [+] $*IN.lines.map: { .words[2] }"

perl6 -e "[+] lines(‘d1‘).map: { .words[2] }

>>-<<

lines(‘d2').map: { .words[2] }"

Perl 6: For Little Tools and Large Applications

For The

Small Tools

Perl 6: For Little Tools and Large Applications

Perl 6 supports writing a

MAIN subroutine that is

invoked at startup.

Automatically maps

arguments to parameters

and generates usage

instructions.

Perl 6: For Little Tools and Large Applications

sub MAIN($number, Bool :$upto) {

my @fib := (1, 1, *+* ... Inf);

if $upto {

say join ',', @fib[0 ..^ $number];

}

else {

say @fib[$number - 1];

}

}

$ perl6 fib.pl 10

55

Perl 6: For Little Tools and Large Applications

sub MAIN($number, Bool :$upto) {

my @fib := (1, 1, *+* ... Inf);

if $upto {

say join ',', @fib[0 ..^ $number];

}

else {

say @fib[$number - 1];

}

}

$ perl6 fib.pl --upto 10

1,1,2,3,5,8,13,21,34,55

Perl 6: For Little Tools and Large Applications

sub MAIN($number, Bool :$upto) {

my @fib := (1, 1, *+* ... Inf);

if $upto {

say join ',', @fib[0 ..^ $number];

}

else {

say @fib[$number - 1];

}

}

$ perl6 fib.pl

Usage:

fib.pl [--upto] number

Perl 6: For Little Tools and Large Applications

Multiple dispatch means you can

write multiple subs with the

same name but taking different

numbers or types of parameters.

multi sub todo($reason, $count) {

$todo_upto_test_num = $num_of_tests_run + $count;

$todo_reason = '# TODO ' ~ $reason;

}

multi sub todo($reason) {

$todo_upto_test_num = $num_of_tests_run + 1;

$todo_reason = '# TODO ' ~ $reason;

}

Perl 6: For Little Tools and Large Applications

Can write multiple MAIN subs

multi sub MAIN('send', $filename) {

…

}

multi sub MAIN('fetch', $filename) {

…

}

multi sub MAIN('compare', $file1, $file2) {

…

}

$ perl6 util.p6

Usage:

util.p6 send filename

or

util.p6 fetch filename

or

util.p6 compare file1 file2

Perl 6: For Little Tools and Large Applications

When working with all but the

simplest data files, often need to

do some parsing

Perl 6 grammars allow you to

write re-usable parsers

Get back a tree of match objects

 have a data structure to start

looking into

Perl 6: For Little Tools and Large Applications

Write a script that works out

the country we sold the most

trips to today.

Russia

Vladivostok : 43.131621,131.923828 : 4

Ulan Ude : 51.841624,107.608101 : 2

Saint Petersburg : 59.939977,30.315785 : 10

Norway

Oslo : 59.914289,10.738739 : 2

Bergen : 60.388533,5.331856 : 4

Ukraine

Kiev : 50.456001,30.50384 : 3

Switzerland

Wengen : 46.608265,7.922065 : 3

Bern : 46.949076,7.448151 : 1

...

Perl 6: For Little Tools and Large Applications

What a lovely non-

standard file format.

Let's write a grammar

for it!

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

…

}

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

…

}

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

…

}

Russia

Vladivostok : 43.131621,131.923828 : 4

Ulan Ude : 51.841624,107.608101 : 2

Saint Petersburg : 59.939977,30.315785 : 10

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

…

}

…

}

Vladivostok : 43.131621,131.923828 : 4

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

…

}

…

}

Vladivostok : 43.131621,131.923828 : 4

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

…

}

Vladivostok : 43.131621,131.923828 : 4

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

token name { \w+ [\s \w+]* }

…

}

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

token name { \w+ [\s \w+]* }

token num { '-'? \d+ [\.\d+]? }

token integer { '-'? \d+ }

}

Perl 6: For Little Tools and Large Applications

grammar SalesExport {

token TOP { ^ <country>+ $ }

token country {

<name> \n

<destination>+

}

token destination {

\t <name> \s+ ':' \s+

<lat=.num> ',' <long=.num> \s+ ':' \s+

<sales=.integer> \n

}

token name { \w+ [\s \w+]* }

token num { '-'? \d+ [\.\d+]? }

token integer { '-'? \d+ }

}

Perl 6: For Little Tools and Large Applications

Now we can turn any file

in this format into a data

structure.

Easy to work with

structured data.

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

…

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

…

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

…

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

…

});

…

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+]

});

…

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>

});

…

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>».<sales>

});

…

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>».<sales>

});

say "Most popular today: $top<name>";

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

my $parsed = SalesExport.parsefile('dump.txt');

if $parsed {

my @countries = @($parsed<country>);

my $top = @countries.max({

[+] .<destination>».<sales>

});

say "Most popular today: $top<name>";

}

else {

die "Parse error!";

}

Perl 6: For Little Tools and Large Applications

Grammars go with being a

glue language  even

easier to get data into a

program.

Perl 6 also makes it easier

to interact with native

libraries.

Perl 6: For Little Tools and Large Applications

use NativeCall;

…

With NativeCall module:

Perl 6: For Little Tools and Large Applications

use NativeCall;

sub mysql_real_connect(

OpaquePointer $mysql_client, Str $host,

Str $user, Str $password, Str $database,

Int $port, Str $socket, Int $flag)

returns OpaquePointer

{ ... }

With NativeCall module:

1. Write a stub subroutine with a signature

Perl 6: For Little Tools and Large Applications

use NativeCall;

sub mysql_real_connect(

OpaquePointer $mysql_client, Str $host,

Str $user, Str $password, Str $database,

Int $port, Str $socket, Int $flag)

returns OpaquePointer

is native('libmysqlclient‘)

{ ... }

With NativeCall module:

1. Write a stub subroutine with a signature

2. Mark it as coming from a native library

Perl 6: For Little Tools and Large Applications

use NativeCall;

sub mysql_real_connect(

OpaquePointer $mysql_client, Str $host,

Str $user, Str $password, Str $database,

Int $port, Str $socket, Int $flag)

returns OpaquePointer

is native('libmysqlclient‘)

{ ... }

With NativeCall module:

1. Write a stub subroutine with a signature

2. Mark it as coming from a native library

3. Profit!

Perl 6: For Little Tools and Large Applications

For the Large

Applications

Perl 6: For Little Tools and Large Applications

If you've used Moose,

you will probably find

the Perl 6 object model

easy to start using.

Different syntax, but a

lot of the same

keywords and concepts.

Perl 6: For Little Tools and Large Applications

class Beer {

has $!name;

method describe() {

say "I'm drinking $!name";

}

}

Creating and using a

class is quick and easy.

my $pint = Beer.new(name => 'Tuborg');

$pint.describe();

Perl 6: For Little Tools and Large Applications

class Dog {

has $.name is rw;

has $.color;

}

Attributes are private;

declarative accessor syntax.

my $pet = Dog.new(

name => 'Spot', color => 'Black'

);

$pet.name = 'Fido'; # OK

$pet.color = 'White'; # Fails

Perl 6: For Little Tools and Large Applications

Perl 6 supports (multiple)

inheritance.

However, multiple

inheritance has issues

(e.g. diamond problem),

and single inheritance

limits re-use.

Perl 6: For Little Tools and Large Applications

As well as classes, the

Perl 6 object model

includes support for

roles.

Perl 6: For Little Tools and Large Applications

A role can have attributes

and methods, but unlike a

class is not intended to be

used on its own.

Instead one or more roles

are composed into a class.

Perl 6: For Little Tools and Large Applications

role Logging {

method log($message) {

my $fh = open('log', :a);

$fh.say($message);

$fh.close;

}

}

class MailSender does Logging {

…

}

Perl 6: For Little Tools and Large Applications

Methods and attributes

are "copied" into the

class, as if they were

declared there.

If two roles try to supply a

method with the same

name, you get a compile

time error.

Perl 6: For Little Tools and Large Applications

role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

}

Perl 6: For Little Tools and Large Applications

Such conflicts can be

resolved by:

Writing a method in the class

that decides what to do

or

Having a proto method in the

class (which forces the two to

become make them multis)

Perl 6: For Little Tools and Large Applications

role Drinking {

method go-to-bar() { … }

}

role Gymnastics {

method go-to-bar() { … }

}

class DrunkGymnast {

does Gymnastics;

does Drinking;

method go-to-bar() {

self.Gymnastics::go-to-bar();

}

}

Perl 6: For Little Tools and Large Applications

Also provides…

Inheritance

Delegation

Constructors

Deferral to parents

Introspection

Meta-programming

Perl 6: For Little Tools and Large Applications

Perl 6 allows you to add type

constraints to your variables,

parameters, attributes, etc.

Enforced at runtime at latest,

but a smart compiler may

complain at compile time if it

detects code that could

never possibly work

Perl 6: For Little Tools and Large Applications

sub show_dist(Str $from, Str $to, Int $kms) {

say "From $from to $to is $kms km.";

}

show_dist('Oslo', 'Lund', 495);

show_dist(495, 'Oslo', 'Lund');

Typed Parameters

Can restrict a parameter to only

accept arguments of a certain type.

From Oslo to Lund is 495 km.

Nominal type check failed for parameter '$from'; expected Str

but got Int instead

in 'show_dist' at line 1:test.p6

in main program body at line 5:test.p6

Perl 6: For Little Tools and Large Applications

Benefits Today

Type annotations allow you to

add more checks and balances

into your application, so you can

be sure nothing is going awry.

Also can serve as good

documentation.

Perl 6: For Little Tools and Large Applications

Gradual Typing

The compiler will be able to

make use of type information to

emit more optimal code (a

current work in progress)

The compiler will be able to do

more checks for you at compile

time and flag up problems

Perl 6: For Little Tools and Large Applications

No extra

type

information

provided

Fully

Statically

typed

program

The compiler lets you

choose how much

type information to

provide

and

tries to give you more

benefits as give it

more information to

work with

Perl 6: For Little Tools and Large Applications

Conclusions

Perl 6: For Little Tools and Large Applications

Perl 6 tries to be good

for little tools and for

large applications.

Perl 6: For Little Tools and Large Applications

Not all features are

applicable to both.

Perl 6: For Little Tools and Large Applications

Give developers a

choice where they

place themselves on

the prototype <->

production scale.

Perl 6: For Little Tools and Large Applications

Provide migration

paths from "quick

hack" to "good code"

without switching

language.

Perl 6: For Little Tools and Large Applications

Thank You!

Perl 6: For Little Tools and Large Applications

Questions?

