Perl GKSignatTlres:
The Fulf Story™
= I LI 5

' =38l iR /It’ i ”
l i V(A .

= &\
u e
Jonathan Worthington = ‘

Perl 6 Sighatures: The Full Story

WHO

Perl 6 Sighatures: The Full Story

Perl 6 Hacker

Rakudo core developer

Focus on the object model,
type system, multiple
dispatch and signature
handling

Perl 6 Sighatures: The Full Story

Traveller

| love to travel. Especially to
Perl events. ©

nnnnnnn

Perl 6 Sighatures: The Full Story

Beer Drinker

Beer is tasty.
| drink it.

\©/

Perl 6 Sighatures: The Full Story

Plan for
today's talk

Perl 6 Sighatures: The Full Story

The basics

Perl 6 Sighatures: The Full Story

The basics

The not so basics

Perl 6 Sighatures: The Full Story

The basics
The not so basics

The slightly mind-bending

Perl 6 Sighatures: The Full Story

The basics
The not so basics
The slightly mind-bending

The “OMG awesome!”

Perl 6 Sighatures: The Full Story

Some Basic
Examples

Perl 6 Sighatures: The Full Story

Some Basic

Examples
(From Perl 5 => Perl 6)

Perl 6 Sighatures: The Full Story

Positional Parameters

sub get coordinates ({
my ($city, S$Scountry) = @ ;

1 B

sub get coordinates ($city, $country) ({

}

Perl 6 Sighatures: The Full Story

Named Parameters

sub get capital {
my $params = @ ;
my Scountry = $params{'country'};

1 B

sub get capital (:$country) {

}

Perl 6 Sighatures: The Full Story

sub

sub

Slurpy Positionals

sort west to east {
return sort {
Sa->latitude <=> $b->latitude

}, @ ;

sort west to east(*@places) {
return (@places.sort({
S*a.latitude <=> $7b.latitude

}) s

Perl 6 Signatures: The Full Sto

sub

sub

By the way...

sort west to east(*Qplaces) {
return (@places.sort({
S*a.latitude <=> $”b.latitude

}) >,

...can also be written in Perl 6 as...

sort west to east(*Qplaces) {
return (@places.sort({ .latitude });

(like sorting on the mapped values)

Perl 6 Sighatures: The Full Story

And even prettier...

sub sort west to east(*@places) ({
return @places.sort({ .latitude });

...can also be written in Perl 6 as...

sub sort west to east(*@places) {
return (@places.sort(*.latitude);

(because *.foo generates a closure
like { $.foo })

Perl 6 Sighatures: The Full Story

Slurpy Nameds

sub sum distances {
my 3%place distances = @ ;
my Stotal = O;
$total += $ for values %place distances;

return Stotal;

sub sum distances (*%$place distances) ({
return [+] %place distances.values

Perl 6 Sighatures: The Full Story

Arity Checking
The Perl 6 runtime checks that
you passed enough parameters.

If you pass too few or too many,
an exception is thrown.

sub book train($from, Sto, S$Sdate, $time) {

}
book train('Lund', 'Paris', '2010-10-09');

Not enough positional parameters passed; got 3 but expected 4

in 'book train' at line 1
in main program body at line 4

Perl 6 Sighatures: The Full Story

Optional Parameters

sub book train {
my (Sfrom, Sto, S$date, $time) = @ ;

1 B

sub book train($from, Sto, Sdate, $time?) {

}

Perl 6 Sighatures: The Full Story

Defaults

sub biggest city {
my Scountry
my S$rank

shift;
shift || 1;

1 B

sub biggest city($country, Srank = 1) {

}

Perl 6 Sighatures: The Full Story

Required Named

Parameters
While positional parameters are

required by default, named

parameters are optional by default.
To require one be passed, use !

sub book train(:$from!, :Sto!,
:Sdate!, :Stime) ({

Perl 6 Sighatures: The Full Story

Parameter
Binding

Perl 6 Sighatures: The Full Story

In Perl 6, parameters are
bound. This means that (by
default) you get aread-only

alias to the original value.

Perl 6 Sighatures: The Full Story

Read-only Alias
In Perl 6, this code will fail:

sub convert;purrency($amount, Srate) {
Samount = Samount * Srate;
return Samount;

}

my Sprice = 99;

$price = convert currency ($price, 11.1);
say S$price;

Cannot assign to readonly value
in 'convert currency' at line 2:test.pé6

in main program body at line 6:test.p6

Perl 6 Signhatures: The Full Sto

IS copy
To give the sub its own copy of the
value to work with, use Is copy.

sub convert currency ($amount is copy, S$rate) ({
Samount = $amount * Srate;
return S$amount;

}

my Sprice = 99;
$price = convert currency ($price, 11.1);
say Sprice;

1098.9

Perl 6 Sighatures: The Full Sto

IS rw
Can also modify the original
without having to pass areference

sub convert_purrency(Samount is rw, Srate) {
Samount = S$amount * S$rate;

}

my $price = 99;
convert currency (Sprice, 11.1);
say Sprice;

1098.9

Perl 6 Signatures: The Full Sto

Passing Arrays / Hashes

In Perl 6, passing an array or hash
works like passing a reference.

sub example (@Qarray, %hash) {
say (@array.elems;
say %hash.keys.join(', ')

}

my @numbers = 1,2,3,4;
my %ages = Jnthn => 25, Noah => 120;

example (@numbers, %ages) ;

4
Noah, Jnthn

Perl 6 Sighatures: The Full Story

Perl 6 Sighatures: The Full Sto

What are types?

In Perl 6, every value knows its type.

say 42 .WHAT;

say ''camel" .WHAT;

say [1, 2, 3] .WHAT,;

say (sub ($n) { $n * 2 }) .WHAT;

Int ()
Str ()

Array ()
Sub ()

A type name in Perl 6 represents all
possible values of that type.

Perl 6 Sighatures: The Full Story

Typed Parameters

Can restrict a parameter to only accept
arguments of a certain type.

sub show dist(Str $from, Str $to, Int S$kms) ({
say "From $from to $to is $kms km.";

}

show dist('Kiev', 'Lviv',6 469);

show dist (469, 'Kiev', 'Lviv');

From Kiev to Lviv is 469 km.
Nominal type check failed for parameter '$from'; expected Str

but got Int instead
in 'show dist' at line l:test.p6
in main program body at line 5:test.p6

Perl 6 Signhatures: The Full Sto

Type Coercions

Sometimes, you want to accept any

type, but then transform it into another
type before binding to the parameter

sub show dist($from, S$to, S$kms as Int) ({
say "From $from to $to is S$kms km.";

}

show dist('Kiev', 'Lviv', '469');

show dist('Kiev', 'Lviv', 469.35);

From Kiev to Lviwv is 469 km.
From Kiev to Lviwv is 469 km.

Perl 6 Sighatures: The Full Story

Constraints

Sometimes, you need to do some more
powerful validation on arguments.

sub discount ($price, S$Spercent
where (1 <= S$percent <= 100)) {
say "You get $percent% off! Pay EUR " ~
Sprice - (Sprice * $percent / 100) ;
}
discount (100, 20);
discount (100, 200) ;

You get 20% off! Pay EUR 80
Constraint type check failed for parameter '$percent'’

in 'discount' at line 2:test.p6
in main program body at line 7:test.p6

Perl 6 Sighatures: The Full Story

Multiple
Dispatch

Perl 6 Sighatures: The Full Story

In Perl 6, you can write many
subs with the same name but
different signatures.

When you call the sub, the
runtime will look at the types
of the arguments and pick the

best match.

Perl 6 Sighatures: The Full Story

Dispatch By Arity
Example (from Test.pm): dispatch by
different number of parameters

multi sub todo($reason, S$count) is export ({
$todo upto test num = Snum of tests run + Scount;
$todo reason = '# TODO ' ~ $reason

}

multi sub todo($Sreason) is export {
$todo upto test num = $num of tests run + 1;
$todo reason = '# TODO ' ~ $reason

Perl 6 Sighatures: The Full Story

Dispatch By Type
Example: part of a JSON emitter

multi to-json(Array S$a) {
return '[' ~
$a.values.map({ to-json($) }).join(', ') ~
B I
}
multi to-json(Hash $h) {
return '{ ' ~
Sh.pairs.map ({
to-json(.key) ~ ': ' ~ to-json(.value)
})°j°in('r ') ~
B

Perl 6 Sighatures: The Full Story

Dispatch By Constraint
Can use multiple dispatch with
constraints to do a lot of "write what
you know" style solutions

Perl 6 Sighatures: The Full Story

Factorial:

Perl 6 Sighatures: The Full Story

Factorial:
fact(0) = 1

Perl 6 Sighatures: The Full Story

Factorial:
fact(0) = 1
fact(n) = n * fact(n - 1)

Perl 6 Sighatures: The Full Story

Factorial:
fact(0) =1
fact(n) = n * fact(n - 1)

multi fact(0) { 1 }
multi fact($n) { $n * fact(S$n - 1) }

Perl 6 Signatures: The Full Story

Factorial:
fact(0) =1
fact(n) = n * fact(n - 1)

multi fact((0)) { 1 }
multi fact($k) { $n * fact($n - 1) }

(Int $ where 0)

Perl 6 Sighatures: The Full Story

Fibonacci Sequence:
fin(0) =0
fib(1) =1
fio(n) =fib(n = 1) + fib(n — 2)

Perl 6 Sighatures: The Full Story

Fibonacci Sequence:
fin(0) =0
fib(1) =1
fio(n) =fib(n = 1) + fib(n — 2)
multi £ib(0) { 0 }

multi £ib(1) { 1 }
multi fib($n) { fib($n - 1) + fib($n - 2) }

Perl 6 Sighatures: The Full Story

Nested
Signatures

Perl 6 Signatures: The Full Story

Captures
A set of parameters form a signature.
A set of arguments form a capture.

Signature
l

|)
sub greet (Sname, :Sgreeting = 'Hi') ({
say "$greeting, Sname!";

}
greet ("Mr L. O’lcat", greeting => ;OH HAI') ;
\

Y
Capture

Perl 6 Sighatures: The Full Story

Coercing To Captures
It IS possible to coerce arrays, hashes
and other objects into captures.
Array elements => positional arguments

Hash pairs => named arguments

Object attributes => named arguments

Perl 6 Sighatures: The Full Sto

Unpacking Arrays
Can extract elements from within an
array, to do FP-style list processing

sub head([S$Shead, *@tail]) {
return Shead;

}

sub tail([$head, *Q@tail]) {
return (@Qtail;

}

my (@example = 1,2,3,4;

say head (Qexample) ;

say tail (@example) ;

1
234

Perl 6 Signatures: The Full Story

Unpacking Hashes
Can extract values by key

sub show place((:$name, :$lat, :Slong, *%rest)) {
say "$name lies at $lat,$long.";
say '"Other facts:";
for %$rest.kv -> S$title, Sdata {
say " Stitle.ucfirst(): Sdata";
}
}
my %info = name => ‘Paris', lat => 48.51,

long => 2.21, population => 2193031;
show place (%info) ;

Paris lies at 48.51,2.21.
Other facts:

Population: 2193031

Perl 6 Sighatures: The Full Story

Unpacking Objects
Can extract values by attribute (only
those that are declared with accessors)

sub nd($r as Rat (:$numerator, :$denominator)) {
say "$r = Snumerator/S$denominator";

}

nd (4.2) ;

nd (3/9) ;

4.2 = 21/5
0.333333333333333 = 1/3

Perl 6 Sighatures: The Full Story

Unpacking + Multiple Dispatch
When using multiple dispatch,
"unpackability” works like a constraint.

Therefore we can do multiple dispatch
based upon the shape and values
Inside of complex data structures.

Perl 6 Sighatures: The Full Story

Example: Quicksort

Perl 6 Sighatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Perl 6 Signatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {

}

Perl 6 Sighatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
Partition.
my (@before
my @Qafter

rest.grep (* < $pivot);
rest.grep (* >= $pivot) ;

@ @

Perl 6 Sighatures: The Full Story

Example: Quicksort

Empty list sorts to the empty list
multi quicksort([]) { () }

Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
Partition.
my (@before
my @Qafter

= @rest.grep(* < S$pivot);

= @rest.grep(* >= $pivot);

Sort the partitions.

(quicksort (@before), Spivot, quicksort(@after))

Perl 6 Sighatures: The Full Story

Introspection

Perl 6 Sighatures: The Full Story

Introspection

We can take a Signature object and get
iInformation about the parameters

sub show dist(Str $from, Str $to, Int S$kms) ({

}

for &show dist.signature.params -> Sp {
say "Sp.name () of type S$p.type.perl()“;
}

Sfrom of type Str
Sto of type Str

Skms of type Int

Perl 6 Sighatures: The Full Story

Zavolaj

A native calling interface that uses

signature introspection to know how to
marshall parameters into C types

use NativeCall;

sub mysqgl real connect (
OpaquePointer S$mysqgl client, Str S$host,
Str Suser, Str S$password, Str S$database,
Int $port, Str S$socket, Int $flaqg)
returns OpaquePointer
is native('libmysqlclient?')

{ ...}

Perl 6 Sighatures: The Full Story

Other uses for
Captures and

Signature
objects

Perl 6 Signatures: The Full Story

Unpacking Return Values

You can bind the return value(s) from a
sub or method call against a signature

my (:S$Sname, :S$score) := $db.get-highest-scorer();
print "$name has the highest score of $score";

Perl 6 Sighatures: The Full Story

Tree-matching
Can use signatures as a tree matching
language, including in given/when

Perl 6 Sighatures: The Full Story

Tree-matching
Can use signatures as a tree matching
language, including in given/when

say 24 + 18

1 B

say 42

Perl 6 Sighatures: The Full Story

Tree-matching
Can use signatures as a tree matching
language, including in given/when

PAST::Op.new(
.pasttype(‘call’),
‘name('&infix:<+>",

PAST::Val.new(
) o :value(42),
— type(int)
-)
PAST::Val.new(PAST::Val.new(
:value(24), :value(18),

‘type(Int) ‘type(int)
))

Perl 6 Sighatures: The Full Story

Tree-matching

Can use signatures as a tree matching
language, including in given/when

given $node ({
Is this a math operation we can constant fold?
when : (PAST::Val (:$type where Numeric,
PAST::Val (:Stype where Numeric,
:$Spasttype where 'call‘,
:Sname where /‘&infix:<' <[+-*%]> ‘>'/,
*3) |

$node = fold constants ($node);

*3)
*3)

3

Perl 6 Sighatures: The Full Story

Test::Mock

A simple Perl 6 mock object testing
framework that | hacked up

Example of how captures and
signatures being first class objects can
be really powerful

http://github.com/jnthn/test-mock/

Perl 6 Sighatures: The Full Story

Test::Mock Example: Setup

class Pub {
method order beer (Spints) { }
method throw ($what) { }

}

class Glass { }

class Party { }

Create mock object and use it (normally we'd pass
it into the code we wanted to test.)

my Sp = mocked (Pub) ;

Sp.throw (Party.new) ;

$p.order beer(2) ;

$p.order beer(1l) ;

Perl 6 Sighatures: The Full Story

Test::Mock Example: Usage

check-mock ($p,

) ;

Perl 6 Sighatures: The Full Story

Test::Mock Example: Usage

check-mock (Sp,
Just check if we called it, with no checks on
the supplied arguments.
*.called('order beer', times => 2)

) ;

Perl 6 Signatures: The Full Story

Test::Mock Example: Usage

check-mock (Sp,
Check using a capture (does equivalence check)
*.called('order beer', times => 1, with => \ (1)),
*.called('order beer', times => 1, with => \(2)),
* .never-called('order beer', with => \(10)),

) ;

Perl 6 Signatures: The Full Sto

Test::Mock Example: Usage

check-mock (Sp,

#
#

* I

* I

Check using a signature (would the arguments
passed in the call bind against it)

Check type of argument passed

.called('throw', with => : (Party)),
.never-called('throw', with => : (Glass)),

Or get fancier with constraints

.called('order beer', times => 2,

with => :($ where { $*n < 10 })),

.never-called('order beer',

with => : ($ where { $*n >= 10 }))

Perl 6 Signatures: The Full Sto

Test::Mock Implementation

method called($name, :S$times, :Swith) {
Extract calls of the matching name.
my @calls = @Q!'log.grep({ .<name> eq $name });

If we've an argument filter, apply it; we eqv
captures and smart-match everything else
if defined ($with) {
if Swith ~~ Capture {
@calls .= grep({ .<capture> eqv Swith });
}
else {
Qcalls .= grep({ .<capture> ~~ $with });
}

Perl 6 Sighatures: The Full Story

Conclusions

Perl 6 Sighatures: The Full Story

Not Just Replacing @ _
Perl 6 signatures provide you with a
neater way to handle arguments
passed to subs and methods than
working with @ .

However, they are also useful away
from subs and methods, e.qg. for tree
matching.

Perl 6 Sighatures: The Full Story

"When?"

All of the examples shown today are
already working in Rakudo Perl 6.

Signature handling and multiple
dispatch are amongst the most mature
and stable parts of Rakudo.

Perl 6 Sighatures: The Full Story

Merci beaucoup!

Perl 6 Sighatures: The Full Story

Questions?

