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WHO
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Perl 6 Hacker

Rakudo core developer

Focus on the object model,
type system, multiple
dispatch and signature
handling
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Traveller

| love to travel. Especially to
Perl events. ©
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Beer Drinker

Beer is tasty.
| drink it.
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Plan for
today's talk
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The basics
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The basics

The not so basics
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The basics
The not so basics

The slightly mind-bending
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The basics
The not so basics
The slightly mind-bending

The “OMG awesome!”
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Some Basic
Examples
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Some Basic

Examples
(From Perl 5 => Perl 6)
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Positional Parameters

sub get coordinates ({
my ($city, S$Scountry) = @ ;

1 B

sub get coordinates ($city, $country) ({

}
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Named Parameters

sub get capital {
my $params = @ ;
my Scountry = $params{'country'};

1 B

sub get capital (:$country) {

}
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sub

sub

Slurpy Positionals

sort west to east {
return sort {
Sa->latitude <=> $b->latitude

}, @ ;

sort west to east(*@places) {
return (@places.sort({
S*a.latitude <=> $7b.latitude

}) s
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sub

sub

By the way...

sort west to east(*Qplaces) {
return (@places.sort({
S*a.latitude <=> $”b.latitude

}) >,

...can also be written in Perl 6 as...

sort west to east(*Qplaces) {
return (@places.sort({ .latitude });

(like sorting on the mapped values)
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And even prettier...

sub sort west to east(*@places) ({
return @places.sort({ .latitude });

...can also be written in Perl 6 as...

sub sort west to east(*@places) {
return (@places.sort(*.latitude);

(because *.foo generates a closure
like { $ .foo })
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Slurpy Nameds

sub sum distances {
my 3%place distances = @ ;
my Stotal = O;
$total += $ for values %place distances;

return Stotal;

sub sum distances (*%$place distances) ({
return [+] %place distances.values
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Arity Checking
The Perl 6 runtime checks that
you passed enough parameters.

If you pass too few or too many,
an exception is thrown.

sub book train($from, Sto, S$Sdate, $time) {

}
book train('Lund', 'Paris', '2010-10-09');

Not enough positional parameters passed; got 3 but expected 4

in 'book train' at line 1
in main program body at line 4
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Optional Parameters

sub book train {
my (Sfrom, Sto, S$date, $time) = @ ;

1 B

sub book train($from, Sto, Sdate, $time?) {

}
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Defaults

sub biggest city {
my Scountry
my S$rank

shift;
shift || 1;

1 B

sub biggest city($country, Srank = 1) {

}
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Required Named

Parameters
While positional parameters are

required by default, named

parameters are optional by default.
To require one be passed, use !

sub book train(:$from!, :Sto!,
:Sdate!, :Stime) ({
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Parameter
Binding
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In Perl 6, parameters are
bound. This means that (by
default) you get aread-only

alias to the original value.
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Read-only Alias
In Perl 6, this code will fail:

sub convert;purrency($amount, Srate) {
Samount = Samount * Srate;
return Samount;

}

my Sprice = 99;

$price = convert currency ($price, 11.1);
say S$price;

Cannot assign to readonly value
in 'convert currency' at line 2:test.pé6

in main program body at line 6:test.p6
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IS copy
To give the sub its own copy of the
value to work with, use Is copy.

sub convert currency ($amount is copy, S$rate) ({
Samount = $amount * Srate;
return S$amount;

}

my Sprice = 99;
$price = convert currency ($price, 11.1);
say Sprice;

1098.9
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IS rw
Can also modify the original
without having to pass areference

sub convert_purrency(Samount is rw, Srate) {
Samount = S$amount * S$rate;

}

my $price = 99;
convert currency (Sprice, 11.1);
say Sprice;

1098.9
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Passing Arrays / Hashes

In Perl 6, passing an array or hash
works like passing a reference.

sub example (@Qarray, %hash) {
say (@array.elems;
say %hash.keys.join(', ')

}

my @numbers = 1,2,3,4;
my %ages = Jnthn => 25, Noah => 120;

example (@numbers, %ages) ;

4
Noah, Jnthn
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What are types?

In Perl 6, every value knows its type.

say 42 .WHAT;

say ''camel" .WHAT;

say [1, 2, 3] .WHAT,;

say (sub ($n) { $n * 2 }) .WHAT;

Int ()
Str ()

Array ()
Sub ()

A type name in Perl 6 represents all
possible values of that type.
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Typed Parameters

Can restrict a parameter to only accept
arguments of a certain type.

sub show dist(Str $from, Str $to, Int S$kms) ({
say "From $from to $to is $kms km.";

}

show dist('Kiev', 'Lviv',6 469);

show dist (469, 'Kiev', 'Lviv');

From Kiev to Lviv is 469 km.
Nominal type check failed for parameter '$from'; expected Str

but got Int instead
in 'show dist' at line l:test.p6
in main program body at line 5:test.p6
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Type Coercions

Sometimes, you want to accept any

type, but then transform it into another
type before binding to the parameter

sub show dist($from, S$to, S$kms as Int) ({
say "From $from to $to is S$kms km.";

}

show dist('Kiev', 'Lviv', '469');

show dist('Kiev', 'Lviv', 469.35);

From Kiev to Lviwv is 469 km.
From Kiev to Lviwv is 469 km.
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Constraints

Sometimes, you need to do some more
powerful validation on arguments.

sub discount ($price, S$Spercent
where (1 <= S$percent <= 100)) {
say "You get $percent% off! Pay EUR " ~
Sprice - (Sprice * $percent / 100) ;
}
discount (100, 20);
discount (100, 200) ;

You get 20% off! Pay EUR 80
Constraint type check failed for parameter '$percent'’

in 'discount' at line 2:test.p6
in main program body at line 7:test.p6
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Multiple
Dispatch
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In Perl 6, you can write many
subs with the same name but
different signatures.

When you call the sub, the
runtime will look at the types
of the arguments and pick the

best match.
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Dispatch By Arity
Example (from Test.pm): dispatch by
different number of parameters

multi sub todo($reason, S$count) is export ({
$todo upto test num = Snum of tests run + Scount;
$todo reason = '# TODO ' ~ $reason

}

multi sub todo($Sreason) is export {
$todo upto test num = $num of tests run + 1;
$todo reason = '# TODO ' ~ $reason
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Dispatch By Type
Example: part of a JSON emitter

multi to-json(Array S$a) {
return '[ ' ~
$a.values.map({ to-json($ ) }).join(', ') ~
B I
}
multi to-json(Hash $h) {
return '{ ' ~
Sh.pairs.map ({
to-json(.key) ~ ': ' ~ to-json(.value)
})°j°in('r ') ~
B
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Dispatch By Constraint
Can use multiple dispatch with
constraints to do a lot of "write what
you know" style solutions
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Factorial:
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Factorial:
fact(0) = 1
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Factorial:
fact(0) = 1
fact(n) = n * fact(n - 1)
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Factorial:
fact(0) =1
fact(n) = n * fact(n - 1)

multi fact(0) { 1 }
multi fact($n) { $n * fact(S$n - 1) }
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Factorial:
fact(0) =1
fact(n) = n * fact(n - 1)

multi fact((0)) { 1 }
multi fact($k) { $n * fact($n - 1) }

(Int $ where 0)
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Fibonacci Sequence:
fin(0) =0
fib(1) =1
fio(n) =fib(n = 1) + fib(n — 2)
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Fibonacci Sequence:
fin(0) =0
fib(1) =1
fio(n) =fib(n = 1) + fib(n — 2)
multi £ib(0) { 0 }

multi £ib(1) { 1 }
multi fib($n) { fib($n - 1) + fib($n - 2) }
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Nested
Signatures
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Captures
A set of parameters form a signature.
A set of arguments form a capture.

Signature
l

| )
sub greet (Sname, :Sgreeting = 'Hi') ({
say "$greeting, Sname!";

}
greet ("Mr L. O’lcat", greeting => ;OH HAI') ;
\

Y
Capture
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Coercing To Captures
It IS possible to coerce arrays, hashes
and other objects into captures.
Array elements => positional arguments

Hash pairs => named arguments

Object attributes => named arguments
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Unpacking Arrays
Can extract elements from within an
array, to do FP-style list processing

sub head([S$Shead, *@tail]) {
return Shead;

}

sub tail([$head, *Q@tail]) {
return (@Qtail;

}

my (@example = 1,2,3,4;

say head (Qexample) ;

say tail (@example) ;

1
234
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Unpacking Hashes
Can extract values by key

sub show place((:$name, :$lat, :Slong, *%rest)) {
say "$name lies at $lat,$long.";
say '"Other facts:";
for %$rest.kv -> S$title, Sdata {
say " Stitle.ucfirst(): Sdata";
}
}
my %info = name => ‘Paris', lat => 48.51,

long => 2.21, population => 2193031;
show place (%info) ;

Paris lies at 48.51,2.21.
Other facts:

Population: 2193031
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Unpacking Objects
Can extract values by attribute (only
those that are declared with accessors)

sub nd($r as Rat (:$numerator, :$denominator)) {
say "$r = Snumerator/S$denominator";

}

nd (4.2) ;

nd (3/9) ;

4.2 = 21/5
0.333333333333333 = 1/3
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Unpacking + Multiple Dispatch
When using multiple dispatch,
"unpackability” works like a constraint.

Therefore we can do multiple dispatch
based upon the shape and values
Inside of complex data structures.
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Example: Quicksort
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Example: Quicksort

# Empty list sorts to the empty list
multi quicksort([]) { () }
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Example: Quicksort

# Empty list sorts to the empty list
multi quicksort([]) { () }

# Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {

}
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Example: Quicksort

# Empty list sorts to the empty list
multi quicksort([]) { () }

# Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
# Partition.
my (@before
my @Qafter

rest.grep (* < $pivot);
rest.grep (* >= $pivot) ;

@ @
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Example: Quicksort

# Empty list sorts to the empty list
multi quicksort([]) { () }

# Otherwise, extract first item as pivot...
multi quicksort([$pivot, *@rest]) {
# Partition.
my (@before
my @Qafter

= @rest.grep(* < S$pivot);

= @rest.grep(* >= $pivot);

# Sort the partitions.

(quicksort (@before), Spivot, quicksort(@after))
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Introspection
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Introspection

We can take a Signature object and get
iInformation about the parameters

sub show dist(Str $from, Str $to, Int S$kms) ({

}

for &show dist.signature.params -> Sp {
say "Sp.name () of type S$p.type.perl()“;
}

Sfrom of type Str
Sto of type Str

Skms of type Int
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Zavolaj

A native calling interface that uses

signature introspection to know how to
marshall parameters into C types

use NativeCall;

sub mysqgl real connect (
OpaquePointer S$mysqgl client, Str S$host,
Str Suser, Str S$password, Str S$database,
Int $port, Str S$socket, Int $flaqg)
returns OpaquePointer
is native('libmysqlclient?')

{ ...}
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Other uses for
Captures and

Signature
objects
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Unpacking Return Values

You can bind the return value(s) from a
sub or method call against a signature

my (:S$Sname, :S$score) := $db.get-highest-scorer();
print "$name has the highest score of $score";
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Tree-matching
Can use signatures as a tree matching
language, including in given/when
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Tree-matching
Can use signatures as a tree matching
language, including in given/when

say 24 + 18

1 B

say 42
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Tree-matching
Can use signatures as a tree matching
language, including in given/when

PAST::Op.new(
.pasttype(‘call’),
‘name('&infix:<+>",

PAST::Val.new(
) o :value(42),
— type(int)
- )
PAST::Val.new( PAST::Val.new(
:value(24), :value(18),

‘type(Int) ‘type(int)
) )
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Tree-matching

Can use signatures as a tree matching
language, including in given/when

given $node ({
# Is this a math operation we can constant fold?
when : (PAST::Val (:$type where Numeric,
PAST::Val (:Stype where Numeric,
:$Spasttype where 'call‘,
:Sname where /‘&infix:<' <[+-*%]> ‘>'/,
*3) |

$node = fold constants ($node);

*3)
*3)

3
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Test::Mock

A simple Perl 6 mock object testing
framework that | hacked up

Example of how captures and
signatures being first class objects can
be really powerful

http://github.com/jnthn/test-mock/
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Test::Mock Example: Setup

class Pub {
method order beer (Spints) { }
method throw ($what) { }

}

class Glass { }

class Party { }

# Create mock object and use it (normally we'd pass
# it into the code we wanted to test.)

my Sp = mocked (Pub) ;

Sp.throw (Party.new) ;

$p.order beer(2) ;

$p.order beer(1l) ;
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Test::Mock Example: Usage

check-mock ($p,

) ;
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Test::Mock Example: Usage

check-mock (Sp,
# Just check if we called it, with no checks on
# the supplied arguments.
*.called('order beer', times => 2)

) ;
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Test::Mock Example: Usage

check-mock (Sp,
# Check using a capture (does equivalence check)
*.called('order beer', times => 1, with => \ (1)),
*.called('order beer', times => 1, with => \(2)),
* .never-called('order beer', with => \(10)),

) ;
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Test::Mock Example: Usage

check-mock (Sp,

#
#

* I

* I

Check using a signature (would the arguments
passed in the call bind against it)

Check type of argument passed

.called('throw', with => : (Party)),
.never-called('throw', with => : (Glass)),

Or get fancier with constraints

.called('order beer', times => 2,

with => :($ where { $*n < 10 })),

.never-called('order beer',

with => : ($ where { $*n >= 10 }))
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Test::Mock Implementation

method called($name, :S$times, :Swith) {
# Extract calls of the matching name.
my @calls = @Q!'log.grep({ .<name> eq $name });

# If we've an argument filter, apply it; we eqv
# captures and smart-match everything else
if defined ($with) {
if Swith ~~ Capture {
@calls .= grep({ .<capture> eqv Swith });
}
else {
Qcalls .= grep({ .<capture> ~~ $with });
}
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Conclusions
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Not Just Replacing @ _
Perl 6 signatures provide you with a
neater way to handle arguments
passed to subs and methods than
working with @ .

However, they are also useful away
from subs and methods, e.qg. for tree
matching.
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"When?"

All of the examples shown today are
already working in Rakudo Perl 6.

Signature handling and multiple
dispatch are amongst the most mature
and stable parts of Rakudo.
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Merci beaucoup!



Perl 6 Sighatures: The Full Story

Questions?



