
Optimizing
Rakudo Perl 6

Jonathan Worthington

OH HAI

Rakudo

What is Rakudo?

Unlike with Perl 5, Perl 6 refers to just the
language, not any one implementation of it

Rakudo is a Perl 6 implementation

Supports a wide range of language features

Actively developed by many contributors
(242 commits, 10 committers in October)

How Rakudo runs programs

How Rakudo runs programs

You give Rakudo your program

Your Program

How Rakudo runs programs

It parses it and builds an AST and a world

Your Program

AST
(Executable stuff)

World
(Declarative stuff)

How Rakudo runs programs

The AST is turned into a VM-specific tree

Your Program

AST
(Executable stuff)

World
(Declarative stuff)

Lower Level AST

How Rakudo runs programs

Which finally becomes code for the VM

Your Program

AST
(Executable stuff)

World
(Declarative stuff)

Lower Level AST

VM Code

How Rakudo runs programs

We do a few fixups to the world…

Your Program

AST
(Executable stuff)

World
(Declarative stuff)

Lower Level AST

VM Code

Fixups

How Rakudo runs programs

…and we’re ready to run!

Your Program

AST
(Executable stuff)

World
(Declarative stuff)

Lower Level AST

VM Code

Fixups

Run
Program

Rakudo Architecture

NQP Perl 6 VM Specific Code VM

Rakudo Architecture

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

NQP Perl 6 VM Specific Code VM

Rakudo Architecture

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Rakudo Architecture

PAST 6model nqp::ops
VM

Abstraction

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Rakudo Architecture

PAST 6model nqp::ops
VM

Abstraction

Parrot

VM
Specific

POST

CLR
Backend

LuaJit
Backend

Actions

World

Grammar Meta
Objects

CORE
Setting

Rakudo

Actions

World

Grammar Meta
Objects

CORE
Setting

NQP (Bootstrapped)

Uses

NQP Perl 6 VM Specific Code VM

Where to optimize?

Optimize the Rakudo compiler

Optimize the setting (built ins)

Optimize NQP (which in turn helps Rakudo)

Optimize the lower level bits

Optimize the programs we’re compiling

Which are we doing?

All of them!

The first half of the this talk will focus on
ways we optimize the compiler stack and

the various built-ins

The second half will focus on the Rakudo
optimizer, which produces better code from

the input programs

Profile, don’t guess!

Optimizations need to get targeted in order
to really make a difference

Making something 2 times faster when it

accounts for 0.5% of program runtime is not
going to be very effective

Profilers tell us where we’re spending time

VM-Level Profiling

What is it?

Profiling that lets us understand the low
level parts of our implementation

May also involve profiling the VM itself

(we do this in the case of Parrot)

May involve profiling the layer on top of it

(this is the case for the CLR backend)

What it can tell us

Often, we find out a lot about the cost of
primitive operations…

Signature binding
Object allocation
Lexical lookups

Invocation
Time spent doing GC

Example

We take our slowest running spectest and
run it through the Visual Studio C profiler

Just from observation, we know that it
spends a lot of time compiling the file

Once we get to running it, it’s all over

within 2 seconds on modern hardware

Example

The output shows we spend 23% of the
time in register allocation

This is decidedly abnormal

Example

We can further drill down to see where
time is being spent

Example

While this does point to inefficiencies in the
register allocator, it also suggests we should

be generating better code

A quick look reveals that a couple of places
generate code with an enormous number of

registers used within a single block

Big pain point worth spending time on

Another story

Profiling compilation of the setting revealed
that a huge amount of time (>20%) was

taken by the GC to scan the system stack

This uncovered a very inefficient algorithm
for pointer analysis that had terrible CPU

cache characteristics

A 50ish line patch got a 20% improvement

Benefits and limits

We can find out what lower level
operations are taking up time

However, at some level everything is made

up of allocations, dispatches, etc.

We need to profile at a higher level in order
to understand what those allocations and

dispatches actually are

Perl 6 and NQP
Profiling

What is it?

Enables us to find out what NQP and Perl 6
level routines we are spending time in

Parrot provides a sub-level profiler, which
produces output that can be viewed using

KCacheGrind

Can sometimes provide a very different
view of where time is being spent

Example

This program was found to run hideously
slowly for some reason

Let’s take a look at it under the high level
language profiler…

my @a = 'AA'..'ZZ';
my @b = 1..100;
.say for @a X~ @b;

Example

Drilling down through the results, we
discover that an awful lot of time is spent

calling the say method (about 35%)

Example

Drilling down, say spends most of its time
calling $*OUT.print(…)

Example

Looking at the code, we see that every call
to IO.print assumes it is dealing with a list

of possible things

That’s a lot of work when we just have a
single string to output!

method print(IO:D: *@list) {
 $!PIO.print(nqp::unbox_s(@list.shift.Str))
 while @list.gimme(1);
 Bool::True
}

Example

Things are improved greatly by adding
another multi candidate for the Str case

proto method print(|$) { * }
multi method print(IO:D: Str:D $value) {
 $!PIO.print(nqp::unbox_s($value));
 Bool::True
}
multi method print(IO:D: *@list) {
 $!PIO.print(nqp::unbox_s(@list.shift.Str))
 while @list.gimme(1);
 Bool::True
}

Example

Continuing on, we end up in the iterator
implementation, and spot something odd

We call two
variants of the
not operator –
one more
expensive
than the other

Example

Continuing on, we end up in the iterator
implementation, and spot something odd

We call two
variants of the
not operator –

one more
expensive

than the other

Fix by
initializing

$end to False!

Example

Going deeper, we find a real hot spot in the
implementation of the X op - one line that

accounts for over 50% of runtime

Example

my $rop = METAOP_REDUCE($op);
…
gather {
 while $i >= 0 {
 if @l[$i].gimme(1) {
 @v[$i] = @l[$i].shift;
 if $i >= $n { my @x = @v; take $rop(|@x); }
 else {
 $i = $i + 1;
 @l[$i] = (@lol[$i].flat,).list;
 }
 }
 else { $i = $i - 1; }
 }
}

This is overkill for the
common case

Cross with an arity-2 op should be easy!

Example

my $rop = @lol.elems == 2 ?? $op !! METAOP_REDUCE($op);
…
gather {
 while $i >= 0 {
 if @l[$i].gimme(1) {
 @v[$i] = @l[$i].shift;
 if $i >= $n { my @x = @v; take $rop(|@x); }
 else {
 $i = $i + 1;
 @l[$i] = (@lol[$i].flat,).list;
 }
 }
 else { $i = $i - 1; }
 }
}

This call took 30%; now
it takes just 3%

Cross with an arity-2 op should be easy!

Example

This was not a made up example; rather, it
was a walk through of a process that

resulted in commits to Rakudo

Just from these changes, the example
program now ran in half the time

There’s plenty more improvements waiting

to be discovered and implemented

Profiler win!

The profiler shows time spent across…

User code (Perl 6)
Built-ins in the setting (Perl 6)

The compiler implementation (NQP)

We can drill down between them (even
seeing where the compiler calls a BEGIN

block written in Perl 6!)

What is an
optimizer?

Where does an optimizer fit in?

The optimization phase comes after we
have fully built the AST and the world

Your Program

AST World

Optimizer

Where does an optimizer fit in?

It considers both, and then tries to improve
them (mostly, it does changes “in place”)

Your Program

AST World

Optimizer

Better AST Better World

Overall approach

An optimizer does everything in two steps

Analysis
What optimizations can I perform here? Is it

really safe to do so?

Transformation
Given the analysis says “yes”, actually do

the optimization

What’s the hard part?

The transformations tend to be relatively
straightforward

All of the hard work takes place in the

analysis phase

Doing a transformation where it’s not safe
results in an “improved” program that is

faster…and wronger!

The Rakudo Perl 6
Optimizer

Optimizations we do today

So far, the optimizer can do…

Inlining simple, declaration-free blocks
Compile-time sub call binding checks

Inlining of simple subs
Compile-time multi-dispatch resolution

Inlining of compile-time resolved multi candidates

It can also detect some cases where code
could never possibly work – and alert you at

compile time

Sample program

For this example, we’ll consider a short
program with a tight loop; the programmer

gave us a little type information too

my int $i = 0;
while $i < 10000000 {
 $i = $i + 1;
}
say $i;

Without optimization (1)

 store_lex "$i", 0
 loop1019_test:
 find_lex $I1013, "$i"
 perl6_box_int $P101, $I1013
 nqp_get_sc_object $P102, "1320268783", 10
 $P1012 = "&infix:<<>"($P101, $P102)
 chain_end_15:
 unless $P1012, loop1019_done
 .const 'Sub' $P1015 = "11_1320268784.057"
 capture_lex $P1015
 $P1015()
 goto loop1019_test
 loop1019_done:
 find_lex $I1020, "$i"
 perl6_box_int $P101, $I1020
 $P102 = "&say"($P101)

Unrequired
boxing

Multi-dispatch to
the < operator on

a hot path

Inner block of the
while loop is an

invocation

Without optimization (2)

.sub "_block1014" :anon
:subid("11_1320268784.057")
 .param pmc param_1017 :call_sig
 .lex "$_", $P1016
 .lex "call_sig", param_1017
 bind_signature
 find_lex $I1018, "$i"
 perl6_box_int $P103, $I1018
 nqp_get_sc_object $P104,
"1320268783.804", 11
 $I100 = "&infix:<+>"($P103, $P104)
 store_lex "$i", $I100
 perl6_box_int $P105, $I100
 .return ($P105)
.end

Unrequired
boxing

Multi-dispatch to
the + operator

Boxing again!

Simple block inlining

In Perl 6, every block is conceptually a new
lexical scope and a closure

Analysis

Our block declares no lexical symbols, so it
serves no operational purpose

Transformation

Flatten it in to the enclosing scope

After simple block inlining
 store_lex "$i", 0
 loop1019_test:
 find_lex $I1013, "$i"
 perl6_box_int $P101, $I1013
 nqp_get_sc_object $P102, "1320268783.804", 10
 $P1012 = "&infix:<<>"($P101, $P102)
 chain_end_15:
 unless $P1012, loop1019_done
 find_lex $P103, "$_"
 set pres_topic_1, $P103
 find_lex $I1016, "$i"
 perl6_box_int $P104, $I1016
 nqp_get_sc_object $P105, "1320271436.881", 11
 $I100 = "&infix:<+>"($P104, $P105)
 store_lex "$i", $I100
 perl6_box_int $P106, $I100
 store_lex "$_", pres_topic_1
 goto loop1019_test
 loop1019_done:
 find_lex $I1020, "$i"
 perl6_box_int $P101, $I1020
 $P102 = "&say"($P101)

Blue
Original code in

outer scope

Green
Inlined code from

the inner block

Orange
Added “safety”

code to preserve
the $_ variable

Operators and multiple dispatch

In Perl 6, all operators are multiple dispatch
lexical subroutines

This means that operator overloading just

means declaring extra multi candidates

Changes are lexically scoped – that is, your
operator changes are not global, and thus

do not affect unrelated code

Performance consequences

The Perl 6 multiple dispatch algorithm can
be implemented efficiently; Rakudo does

rather well here

However, invocation overhead is still very
high compared to just adding two numbers!

The good news: in a given scope we know

all of the multi candidates that are possible

Compile time resolution

Knowing all possible candidates

+
Knowing the types of all arguments

=
Can (sometimes) decide which candidate is

going to be called at compile time

\/

Compile time resolution

At compile time we know that...

Will make a call &infix<+>(int, int)

Can we safely decide which multi candidate
will be called based upon this information?

$i + 1

Compile time resolution

:(Int $a, Int $b)
:(Num $a, Num $b)
:(Rat $a, Rat $b)
:(Rat $a, Int $b)
:(Int $a, Rat $b)
:(Complex $a, Complex $b)
:(Real $a, Real $b)
:(Complex $a, Real $b)
:(Real $a, Complex $b)

:(int $a, int $b)
:(num $a, num $b)

:(Any $a, Any $b)

&infix<+>
We cannot go for a simple

match – we have incomplete
information in some cases

Just because we statically

have Any does not mean we
won’t have types that pick a

narrower candidate at
runtime

However, always safe to pick

from natives group or the
one immediately above it

Inlining

Deciding which multi candidate to invoke
helps a bit – but the decision making is
actually dominated by the invocation

However, we have another option: some

very simple subs can be inlined

This means their bodies are just copied to
the place where the call would be

After inlining operator multis

 store_lex "$i", 0
 loop1019_test:
 find_lex $I1014, "$i"
 islt $I100, $I1014, 10000000
 perl6_booleanize $P101, $I100
 perl6_decontainerize_return_value $P102, $P101
 unless $P1012, loop1019_done
 find_lex $P103, "$_"
 set pres_topic_1, $P103
 find_lex $I1015, "$i"
 add $I100, $I1015, 1
 store_lex "$i", $I100
 perl6_box_int $P103, $I100
 store_lex "$_", pres_topic_1
 goto loop1019_test
 loop1019_done:
 find_lex $I1020, "$i"
 perl6_box_int $P101, $I1020
 $P102 = "&say"($P101)

Here, the <
operator has
been inlined

Here, the +
operator has
been inlined

Additionally,
much boxing is

now gone!

Result

The optimizations result in code that is
much more “to the point”, and that isn’t
paying invocation overhead all the time

Compared to the original program, this
optimized version runs 23 times faster!

The code still isn’t all that great – we can do

somewhat better yet

That could never work!

While trying to resolve some dispatches at
compile time, the optimizer may also be

able to prove that it will never work

sub greet($name, $greeting) {
 say "$greeting, $name";
}
greet("Elena");

===SORRY!===
CHECK FAILED:
Calling 'greet' will never work with argument types (str)
(line 4)
 Expected: :(Any $name, Any $greeting)

Future Optimizer
Work

Variable analysis

Currently, the optimizer does not analyse
how variables are used in a program

Knowing when variables are read and/or

written would allow for a range of
optimizations and detection of program

errors at compile time

This is the “next big task” for the optimizer

Method inlining

Methods calls are late bound, so we don’t
tend to really know what to inline

However, we can make a good guess, then

include both an inline and a guard type
check, which falls back to a normal dispatch

Best when the call is in a hot loop, but the

guard check can be moved outside of it

Type inference

Many variables keep the same type they
start out with for their entire lifetime

May be able to infer this initial type, and

then try to “prove” that it is preserved
throughout the variable’s life time

A way to make untyped programs faster

Looking
Ahead

Faster!

The Rakudo of today tends to be faster –
and is sometimes considerably faster – than

the Rakudo of a year ago

Performance is one of the biggest adoption
blockers, and is a big focus for us

Much more work to come – stay tuned, or

come and join in the fun!

all<Ďakujem Danke>

Questions?

Blog: http://6guts.wordpress.com/
 Twitter: jnthnwrthngtn
Email: jnthn@jnthn.net

