
Composable Concurrency
in Perl 6

Jonathan Worthington

A short history of pain

I’ve spent a lot of time working with C# and .Net.
There, multi-threaded apps are common, partly
because you can’t tie up the main UI thread in a

GUI app, and partly due to web applications.

Sadly, correctness has been less common.

The majority of code I reviewed for thread-safety
had at least one locking bug or race condition – or

was oblivious to threading!

Things are improving…

In recent years, mainstream languages and
frameworks have taken in that most developers
will never build robust software out of locks. It’s

just too hard.

So, we’ve been seeing dozens of innovations that
help make things better.

My goal: make sure Perl 6 gets the best of them,

and makes them work together!

First, some defintions…

How should we define…

Asynchrony?
Parallelism?

Concurrency?

Are they the same? Different?

Getting everybody to agree on a definition is hard,
but let me give you the ones I’ll use for the

duration of this talk…

Asynchrony

Synchronous is "the normal thing": we call
something, it does its work, then returns a result

With asynchronous, we call something, it sets the

work in motion, and returns

$data = load($f);

do next thing

sync
load

$data = load($f);

do next thing
do another
…
…
…

async
load

Parallelism

Break a problem into pieces we can do at the
same time

This enables us to exploit multi-core CPUs to solve
the problem faster

Task 1

Task 2

Task 3

Time

Concurrency

About coping with events arising whenever they
please, and trying to do "the right thing"

Arises when we have asynchrony and/or
parallelism at work in a system

May also arise naturally in some domains, which

are inherently concurrent

Co-ordinator

Computation completed

File download completed

User request

Asynchrony should be explicit

Asynchrony, however you go about it, will force
the programmer to deal with its presence

Points in a program that go from synchrony to

asynchrony, and from asynchrony to synchrony,
are likely points for bugs and bottlenecks

Should be obvious when asynchrony happens

Should be easy to stay asynchronous once you

start going in that direction

Parallelism may be implicit

By contrast, using parallelism to complete an
operation in less (wallclock) time does not
introduce asynchrony in the larger program

For example, in both of…

…the result is assigned to @c before execution
proceeds. Parallelism encapsulates well and is

much less disruptive to program design.

my @c = @a Z+ @b; # Zip-add, sequential
my @c = @a >>+<< @b; # Hyper-add, maybe parallel

Composability

It’s hard to precisely define composability, at
least, without resorting to category theory.

Informally, two things compose when you can put

them together and they work “as expected”

Simple example: things like map and grep

my @chosen = @beers.grep(*.volume >= 5)\
 .grep(*.style eq 'ale‘)\
 .map(*.name);

Direct thread use: uncomposable

What if every component in a system that
wants to do some work in parallel or

asynchronously starts threads to do it?

Soon, dozens of threads! No common way to
handle their failures, prioritize, etc.

Component 1

T T

Component 2

T T

Component 3

T T

Locks: uncomposable

Taking two operations that use locks and
work individually , and running them

together, may run into deadlock!

This circular waiting is all too easy to fall
into, especially as a system grows

Thread 1

Locks A

Thread 2

Locks B

Needs B Needs A

Callbacks: uncomposable

So we asynchronously read in a file, passing two
callbacks for success and failure:

But how do we further process the outcome of

these? The result is nested callbacks – the goto of
asynchronous programming 

slurp_async($filename,
 sub ($content) {
 # Do stuff
 },
 sub ($error) {
 # Handle it
 });

Factor out the synchronization

As well as being composable, combinators like
map, grep and uniq factor out both state and

flow control from our own code

For dealing with asynchrony, we’d like to define
combinators that:

Are composable

and
Factor out synchronization

Promises

Promise.run takes a code block and schedules it
to run asynchronously (on some other thread)

It produces a Promise object, which represents

the ongoing piece of work

We don't spawn a thread per promise. Rather, a
scheduler spreads them over a pool of threads.

my $p10000 = Promise.run({
 (1..Inf).grep(*.is-prime)[9999]
})

The async construct

This is a sufficiently common thing to want to do
that there’s a shortcut, which actually does

nothing more than call Promise.run:

Note that you should always do something with

the Promise that comes back from an async block,
or you risk missing errors! (Aside: we may do

something with promises in sink context.)

my $p10000 = async {
 (1..Inf).grep(*.is-prime)[9999]
}

A promise is kept or broken

If the code inside of the async block completes
successfully, then the promise is kept. If it instead

throws an exception, the promise is broken.

This can be inspected with status:

my $p10000 = async {
 (1..Inf).grep(*.is-prime)[9999]
}
say $p10000.status; # Planned (probably)
some time later
say $p10000.status; # Kept

then

So how do we say what to do after a promise has
been kept or broken? Using then - which returns

a promise representing the combined work:

my $p10000 = async {
 (1..Inf).grep(*.is-prime)[9999]
}
my $base16 = $p10000.then(sub ($res) {
 $res.result.base(16)
});
my $pwrite = $base16.then(sub ($res) {
 spurt 'p10000.txt', $res.result;
 return 'p10000.txt';
});

Already beats callbacks!

When you call then on a promise, it gives you
back another promise - just like map takes a list

and gives you back another one

Furthermore, just as you can store the result of a
map in an array and base multiple future

computations off of it, you can call then multiple
times on the same promise to base multiple

future asynchronous computations off its work

Much nicer! 

Back to synchrony

So, then makes it easy for us to follow up one
piece of asynchronous work with another. But
what if we really want to block on a promise

having a result? In this case, just call result or
use await (which may take many promises):

If any exception is thrown by any of the steps
along the way, the promise is broken and calling
result or await will throw the exception.

say $pwrite.result; # p10000.txt
say await $pwrite; # p10000.txt

Not just for CPU-bound

A Promise doesn’t just have to represent a piece
of CPU-bound work. For example, you can create a

Promise kept after a delay:

Or after a file was read in:

my @a = (1..20).pick(*);
await @a.map(-> $n {
 Promise.sleep($n).then({ say $n })
})

my $data = IO::Async::File.new(path => $p).slurp;

Combinators: allof, anyof

Promise.allof and Promise.anyof produce a
promise that is kept when all or any of the

specified promises are kept.

Put this together with sleep, and we have a
timeout mechanism of sorts:

await Promise.anyof($p10000, Promise.sleep(5));
say $p10000.status == Kept
 ?? $p10000.result
 !! 'Timed out';

Make your own promises

The built-in promise makers aren't particularly
special. In fact, you can put anything that will later

produce a value or exception behind a promise

Simply create a new Promise…

…and then call keep or break some point later:

my $p = Promise.new;

$p.keep($value);

Example: nth_or_timeout (1)

Making our own Promise objects is useful for
implementing new combinators

Our timeout mechanism earlier sucked because

the computation continued even after the timeout

We'd prefer to have just written:

say await nth_or_timeout(
 (1..Inf).grep(*.is-prime),
 2000,
 10);

Example: nth_or_timeout (2)

sub nth_or_timeout(@source, $n, $timeout) {
 my $p = Promise.new;
 my $t = Promise.sleep($timeout);
 ...
 $p
}

Example: nth_or_timeout (3)

sub nth_or_timeout(@source, $n, $timeout) {
 my $p = Promise.new;
 my $t = Promise.sleep($timeout);
 async {
 my $result;
 ...
 $p.keep($result);
 }
 $p
}

Example: nth_or_timeout (4)

sub nth_or_timeout(@source, $n, $timeout) {
 my $p = Promise.new;
 my $t = Promise.sleep($timeout);
 async {
 my $result;
 for ^$n {
 if $t.status == Kept {
 $p.break('Timed out');
 last;
 }
 $result = @source[$n];
 }
 $p.keep($result);
 }
 $p
}

Only I may keep or break…

The built-in promise makers go a step further, and
get exclusive access to keep or break the promise,

using a keeper. You can also do this:

Get/store the keeper
my $p = Promise.new;
my $k = $p.keeper;

Some time later...
$k.keep($result);
...or...
$k.break($exception);

The scheduler

If you look at the inside of Promise, you will find
various bits of synchronization logic, but nothing

that introduces actual asynchrony

That is the role of a scheduler

The current default scheduler is located through
the $*SCHEDULER dynamic variable

It defaults to ThreadPoolScheduler, which

schedules work over a pool of threads

Example: Promise.run

With all we've covered so far, you can now
understand the implementation of Promise.run:

method run(Promise:U: &code,
 :$scheduler = $*SCHEDULER) {
 my $p = Promise.new(:$scheduler);
 my $k = $p.keeper;
 $scheduler.schedule_with_catch(
 { $k.keep(code()) },
 -> $ex { $k.break($ex) });
 $p
}

Channels

Provide a thread-safe synchronization mechanism
based around a queue

A channel is created like this:

One or more threads can send:

Meanwhile, one or more threads can receive:

my $c = Channel.new;

$c.send($result);

my $val = $c.receive;

Producer / Consumer

Channels are a great fit in scenarios where
something is producing values for something else

to consume and process

Since many parallel workers may produce or
consume at each point, they lend themselves well

to scaling each stage as needed

The stages are each single-threaded on the inside,
meaning there's little synchronization to care for

Example: parse all the configs

Take a bunch of INI files, read each one, parse
them, collect all the config into a single hash

Reading the files puts contents into a channel

Parsing receives, parses, and sends a hash of the

parsed output on another channel

A combiner brings them together

<code>

The weakness of channels

If promises are about synchronizing scalar results,
are channels about synchronizing a list of results

as they become available?

While channels are great in producer/consumer
scenarios, they differ from promises:

Unlike then, you can only receive once 

Additionally, receive is blocking; heavy use of

channels means lots of sync/async boundaries 

"But you showed us…"

Those at my first Perl 6 concurrency session, given
at YAPC::Europe 2013, will remember some

examples showing building channel combinators.

You can still do that, but when you start doing it a
lot, and for fine-grained things, it leads to a lot of

thread pool threads sitting blocked on receive.

We could indeed make that case yield, but that
means taking a continuation, which we'll struggle

to make perform on all platforms. So…

Subscribables

Subscribables are an alternative mechanism
for dealing with streams of items being produced

over time

Unlike channels, they are push-based. It's a little
bit like having a Promise whose then method

fires multiple times

Instead of then, we call it next

Publishers

A Publisher is an object that sends things to all
of its subscribers. We create it:

We can then subscribe to it:

And publish things to subscribers:

my $p = Publisher.new;

$p.subscribe(&say);

$p.next('dugong');

Push, not pull

We push the values out to the subscribers

No asynchrony unless you ask for it

However, once you start working asynchronously
then you stay asynchronous

Can do fine-grained things with the stream of

values without the blocking receive that channels
give, so it can be much more efficient

Publish.interval

While Publisher doesn't introduce any asyncrhony
(unless you choose to make it do so), there are

other things that do

For example, Publish.interval publishes an
incrementing integer at a regular interval. This is

done asynchronously.

Publish.interval(1).subscribe(&say);

Familiar combinators

It turns out that we can define lots of familiar
combinators from list-y things on subscribable

things also!

 my $interval = Publish.interval(5);

Familiar combinators

It turns out that we can define lots of familiar
combinators from list-y things on subscribable

things also!

 my $interval = Publish.interval(5);

my $slurped = $interval.map({ slurp('ini1.ini') });

Familiar combinators

It turns out that we can define lots of familiar
combinators from list-y things on subscribable

things also!

 my $interval = Publish.interval(5);

my $slurped = $interval.map({ slurp('ini1.ini') });
my $changed = $slurped.grep({
 state $last = '';
 LEAVE $last = $_;
 $last ne $_
});

Familiar combinators

It turns out that we can define lots of familiar
combinators from list-y things on subscribable

things also!

 my $interval = Publish.interval(5);

my $slurped = $interval.map({ slurp('ini1.ini') });
my $changed = $slurped.grep({
 state $last = '';
 LEAVE $last = $_;
 $last ne $_
});
$changed.subscribe(&say);

A more real example

A recent example from my work involved a
conveyor belt of agricultural product (maybe

wheat) having moisture content readings taken

We read them from a sensor mounted above a
belt once per second

Every 5 seconds (in this example - longer in reality)

we take a sample of the product for a closer
analysis

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);
my $belt_raw = $seconds.map({ rand xx 100 });

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);
my $belt_raw = $seconds.map({ rand xx 100 });
my $belt_avg = $belt_raw.map(sub (@values) {
 ([+] @values) / @values
});

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);
my $belt_raw = $seconds.map({ rand xx 100 });
my $belt_avg = $belt_raw.map(sub (@values) {
 ([+] @values) / @values
});
my $belt_label = $belt_avg.map({ "Belt: $_" });

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);
my $belt_raw = $seconds.map({ rand xx 100 });
my $belt_avg = $belt_raw.map(sub (@values) {
 ([+] @values) / @values
});
my $belt_label = $belt_avg.map({ "Belt: $_" });

my $samples = Publish.interval(5).map({ rand });
my $samples_label = $samples.map(
 { "Sample: $_" });

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);
my $belt_raw = $seconds.map({ rand xx 100 });
my $belt_avg = $belt_raw.map(sub (@values) {
 ([+] @values) / @values
});
my $belt_label = $belt_avg.map({ "Belt: $_" });

my $samples = Publish.interval(5).map({ rand });
my $samples_label = $samples.map(
 { "Sample: $_" });

my $merged = $belt_label.merge($samples_label);

Modeling the belt/samples scenario

my $seconds = Publish.interval(1);
my $belt_raw = $seconds.map({ rand xx 100 });
my $belt_avg = $belt_raw.map(sub (@values) {
 ([+] @values) / @values
});
my $belt_label = $belt_avg.map({ "Belt: $_" });

my $samples = Publish.interval(5).map({ rand });
my $samples_label = $samples.map(
 { "Sample: $_" });

my $merged = $belt_label.merge($samples_label);

$merged.subscribe(&say);

The on meta-combinator

Implementing combinators like merge is non-
trivial because different threads may be sending

the values - forcing us to deal with
synchronization

The on combinator exists to help build other
combinators involving multiple subscriptions,

factoring out the synchronization

<study merge, zip>

Back to synchrony

All this asynchrony is great, but what if you
somewhere need to return to the world of

synchronous programming?

Any subscribable can be coerced to a Channel
(sending each value)

It can also be coerced to a lazy list, so you can
iterate over the results (for example, just using a

for loop) - but of course, you block!

Subscribables: early days

The implementation of subscribables is, as of this
presentation, just days old

Case in point: the on meta-combinator was

implemented on the train yesterday 

Lots of work on robustness, performance and API
improvements, specification and test coverage to

come over the next weeks, months, etc.

Best feedback is from people trying it out

Composing composable paradigms

In general, the goal is to provide paradigms for
working asynchronously that have good

composability properties

Furthermore, each of those paradigms (promises,
channels, subscribables) should be composable

with each other

Channel  Subscribable
Promise  Subscribable

Promise  Channel

Closing thoughts

Perl 6 has a big opportunity to support
asynchronous and parallel programming well

Already, using Rakudo on JVM, you can put

multiple CPU cores to use in your Perl 6 programs

For those of you not wanting to work on the JVM,
we'll provide support for these features in Rakudo

on MoarVM (target: Q1 2014)

Try it out, provide feedback, have fun 

Thank you!

Questions?

Blog: 6guts.wordpress.com
Twitter: @jnthnwrthngtn
Email: jnthn@jnthn.net

