
Everyday Lessons from
Rakudo Architecture

Jonathan Worthington

What do I do?

I teach our advanced
C#, Git and software
architecture courses

Sometimes a mentor at

various companies in
Sweden

Core developer on the
Rakudo implementation

of Perl 6

Focus on meta-object
protocol and the

gradual type system

Why this session?

While most developers are not building compilers,
they typically are building systems that…

Are relatively complex

Need testing
Deal with languages in some form

In these situations, I’ve found it valuable to draw

lessons from some of the things that have worked
well in dealing with such situations in Rakudo

Decouple around well-defined
data structures

Rakudo at a high level

A series of strong isolated stages, passing well
defined data structures between them

Frontend (parse, build AST)

Optimizer

QAST -> VM AST

Assembler

QAST

QAST

JAST,
MAST,
PIRT

Text

Bytecode

QAST: making multi-backend sane

Between the frontend and the backend, we pass a
QAST tree, representing the semantics of the

program, abstract form any particular VM

This well-defined data structure is what enables a
clean decoupling of frontend and backend

QAST::Op
op => 'add_i'

QAST::Var
name => '$x'

QAST::IVal
value => 1

Another example: Git

Commit history is represented as a DAG of commit
objects, each point to its parent(s)

Each commit object points to trees (representing a
version of a directory), which in turn point to blobs

(representing a version of a file)

Pretty much all the commands can be understood in
terms of how they build, examine or mutate these

various data structures

A quote from Linus Torvalds

“… git actually has a simple design, with stable and
reasonably well-documented data structures. In fact,
I'm a huge proponent of designing your code around

the data, rather than the other way around, and I
think it's one of the reasons git has been fairly

successful … I will, in fact, claim that the difference
between a bad programmer and a good one is

whether he considers his code or his data structures
more important. Bad programmers worry about the

code. Good programmers worry about data
structures and their relationships.”

So, what of OOP?

OO tells us to encapsulate data and expose
behaviour. But here, we’re looking at exposing data.

That’s what a data structure does!

Rakudo’s stages use OOP quite heavily on the inside.
You’ll find examples of classes, inheritance, role

composition and mix-ins all being put to good use.

But a small number of well-defined, rarely mutated
(or immutable) data structures form an even looser

coupling than behaviours on objects.

Testing is easiest when the
system resembles a filter

Testing a compiler

Compilers are amongst the easiest kinds of software
to write automated tests for

Observing the ease of testing, I pondered why, and
how to apply it to other kinds of software...

• Write a small program that exercises a feature or feature

interaction

• Compile the program and execute it

• See if the output is what was expected

Replicating the ease

The pattern seems to be something like...

Any time we can treat a system as being a black box
that transforms one stream into another, we win.

But can we build business systems, that need to do

persistence and stuff, like this?

System under
test as a

"black box"

Some kind of
data-driven

input

Output tested
against data
expectation

The challenge of state

Compilers don’t have to worry about prior state.
Business logic almost always has to make decisions

based on the current system state, however.

Setting objects up to represent an existing state
makes retaining encapsulation hard, and mocking

database access is not too fun either – and certainly
doesn’t feel filter-like!

Is there a way out?

Event sourcing

If we capture every decision made in the system as
an event , and persist those events, we can always

assemble the latest state from them

Better still, we can do this without breaking the

encapsulation of objects; we just feed them events

event

state state state state

event event

Commands and events

Events model decisions. We need two more things.

Commands to model requests
Exceptions to model refusing a request

With this, things look more filter-like!

Domain

Command

Event(s)

Exception





OR

Past Events

BDD

This maps very naturally to the BDD approach to
testing, which breaks a test into:

Given

(Zero or more past events)

When
(A command is executed)

Then

(Zero or more new events, or an exception)

Bugs are tests we didn't write yet

The stream-transforming black box approach to
testing extends very naturally to describing bugs

This approach optimizes for turning a bug report
into a reproducible, automatable test case

Helps to produce more specific bug reports

Buggy system
considered as
a "black box"

Some input
that triggers

the bug

Output that
fails to meet
expectations

Languages are everywhere,
compilers skills can help

Languages are everywhere

There's the things most people think of....

Perl 5, Perl 6, C, LOLCODE, etc.
SQL

HTML and XML

Then there's the things they don't...

INI file format

HTTP or email headers
Git commit message format

Languages are everywhere

There's the things most people think of....

Perl 5, Perl 6, C, LOLCODE, etc.
SQL

HTML and XML

Then there's the things they don't...

INI file format

HTTP or email headers
Git commit message format

And we don't always
treat these as the

languages they are

Strings attached

When we don't realize we're dealing with a
language, we may be tempted to always treat things

in that language as simple strings.

Compiler writers know that strings suck!

Strings attached

When we don't realize we're dealing with a
language, we may be tempted to always treat things

in that language as simple strings.

Compiler writers know that strings suck!

[branch "master"]
 remote = origin
 merge = refs/heads/master

"It's just a string, right?"

Strings attached

When we don't realize we're dealing with a
language, we may be tempted to always treat things

in that language as simple strings.

Compiler writers know that strings suck!

[branch "master"]
 remote = origin
 merge = refs/heads/master

Section
heading

Strings attached

When we don't realize we're dealing with a
language, we may be tempted to always treat things

in that language as simple strings.

Compiler writers know that strings suck!

[branch "master"]
 remote = origin
 merge = refs/heads/master

Section
heading

Quoting
language
nested in

INI file
language!

Strings attached

When we don't realize we're dealing with a
language, we may be tempted to always treat things

in that language as simple strings.

Compiler writers know that strings suck!

[branch "master"]
 remote = origin
 merge = refs/heads/master

Section
heading

Quoting
language
nested in

INI file
language!

Key/value pairs, one per line,
belong to containing section

SQL injection: mind your language

It's 2013 and SQL injection - the vulnerability of my
web development childhood - is still everywhere!!!

WHY U NO TREAT SQL AS LANGUAGE?

DEVELOPERS!

SQL injection: mind your language

SQL injection happens when we treat building SQL -
a rather complex language - as string manipulation.

Works if we get a number as input. But what if
$volume contains:

$db.execute("
 SELECT Id, Name, AlcoholVolume, Description
 FROM Beers
 WHERE AlcoholVolume > $volume");

1; DROP TABLE Beers;

And there's more...

XSS (Cross-Site Scripting) happens when user input
is incorporated into a web page without first

escaping it to be treated as literal text by a browser

Many form mail scripts have been attacked by
sending a subject containing a new line...then

whatever extra headers the attacker likes

All injection vulnerabilities stem from failing to
recognize languages for what they are, and instead

working with them as strings.

What a compiler does

Program
Text

Parse

Source Tree

Target Tree

Code Gen
Compiled

Output

What a compiler does

Program
Text

Parse

Source Tree

Target Tree

Code Gen
Compiled

Output

String String Meaningful Language Models

Generalizing the pattern

Text Parse

Data
Structure

Transform Result

Instead of trying to get straight from textual input to
the desired result, compilers take care to separate

parsing from transformation.

This is a pattern we can apply in a wide range of
situations when dealing with textual input.

Story: porting hackathon

Fellow Perl 6 developer Carl Mäsak
happened upon a bottle of port.

There was only one thing to do...

Port a module from some other

language to Perl 6...while drinking
the bottle of port!

Real "porting"... 

Story: porting JSON Path

We chose to port a module for handling JSONPath
queries - a kind of XPath for JSON. We started off by

examining how it was implemented in Perl 5...

Story: porting JSON Path

We chose to port a module for handling JSONPath
queries - a kind of XPath for JSON. We started off by

examining how it was implemented in Perl 5...

$x =~ s/[\['](\??\(.*?\))[\]']/_callback_01($self,$1)/eg;
$x =~ s/'?\.'?|\['?/;/g;
$x =~ s/;;;|;;/;..;/g;
$x =~ s/;\$|'?\]|'$//g;
$x =~ s/#([0-9]+)/_callback_02($self,$1)/eg;

Story: porting JSON Path

We chose to port a module for handling JSONPath
queries - a kind of XPath for JSON. We started off by

examining how it was implemented in Perl 5...

$x =~ s/[\['](\??\(.*?\))[\]']/_callback_01($self,$1)/eg;
$x =~ s/'?\.'?|\['?/;/g;
$x =~ s/;;;|;;/;..;/g;
$x =~ s/;\$|'?\]|'$//g;
$x =~ s/#([0-9]+)/_callback_02($self,$1)/eg;

It works. It has tests. It does kinda
parse, but the parsing is tightly
bound up with the expression

evaluation. We could do better...

Story: porting JSON Path

Here are a few JSON Path examples:

JSON Path Query What it does

$.store.book[*] Gets all book objects
under the top store key

$.store.book[*].author Get the authors of all
the books

$..book[-1:].author Get the author of the
last book object found
anywhere in the data

Story: porting JSON Path

For parsing, we turned to Perl 6 grammars.

my grammar JSONPathGrammar {
 token TOP {
 ^ <commandtree> [$ || <giveup>]
 }

 token commandtree {
 <command> <commandtree>?
 }

 proto token command { * }
 # Parsing of the commands come here

 method giveup() {
 die "Parse error near pos " ~ self.pos;
 }
}

Story: porting JSON Path

Here are the rules used for parsing some of the
JSONPath commands.

token command:sym<$> { <sym> }

token command:sym<.> { <sym> <ident> }

token command:sym<[*]> { '[' ~ ']' '*' }

token command:sym<..> { <sym> <ident> }

token command:sym<[n]> {
 | '[' ~ ']' $<n>=[\d+]
 | "['" ~ "']" $<n>=[\d+]
}

Story: porting JSON Path

The grammar gets us as far as having a parse tree. In
order to transform that, we can supply actions.

Actions are methods with names matching the rules

in the grammar. When the grammar parses a rule
successfully, it calls the action method.

The action methods can be used to build up a data

structure based on the parse tree. That is, they offer
a hook to do another step of transformation.

Story: porting JSON Path

At first we pondered transforming it into a tree and
writing a little tree-walking interpreter. But, that felt
like overkill. Then we realized: we just want closures!

method command:sym<$>($/) {
 make sub ($next, $current, @path) {
 $next($object, ['$']);
 }
}

method command:sym<.>($/) {
 my $key = ~$<ident>;
 make sub ($next, $current, @path) {
 $next($current{$key}, [@path, "['$key']"]);
 }
}

Story: porting JSON Path

Each command produces a closure. The first
argument expects to be given a closure that
executes the next command. The action for

commandtree stitches it all together.

method commandtree($/) {
 make $<command>.ast.assuming(
 $<commandtree>
 ?? $<commandtree>[0].ast
 !! sub ($result, @path) {
 given $result_type {
 when ValueResult { take $result }
 when PathResult { take @path.join('') }
 });
}

Story: porting JSON Path

By separating parsing and transformation as we did
the porting of the module, we had…

A cleaner solution

Concerns better separated, simpler code

A more efficient solution
We could cache the closure, not parse each time

A shorter solution

The original: 435 lines. Our port: 222 lines.

Takeaways

Many problems are easier to solve under a transform

In particular, solving problems involving all but the
most trivial languages is greatly assisted by first

transforming the text into a more suitable model

Strings are an anaemic model, and keep us from
writing code that focuses on a language's concepts

Treat languages like they are languages!

tl;dr

Decouple around well defined data
structures or events

~~

Tests that look streamy are good
~~

Tests and bug reports can be unified
~~

Don't treat languages as strings

Thanks for listening!

???

If you want to hunt me down online…

Email: jnthn@jnthn.net
Twitter: @jnthnwrthngtn

Any questions?

