
Using invoke dynamic to teach
the JVM a new language

Jonathan Worthington

Things I work on

Writing and teaching
courses, mostly about
software architecture,

TDD and C#

Various bits of
mentoring and

consulting

Lead developer and
architect of the Rakudo
Perl 6 compiler; focus

on OO, type system, etc.

Various other
contributions (native
calling, debugger, ...)

Bringing Perl 6 to the JVM

Over the last year, I've been working on bringing
Perl 6 to the Java Virtual Machine

Many languages have a JVM port these days

In JDK7, the invokedynamic instruction was added

Its initial aim was to help those writing compilers for

languages of a more dynamic nature. However, it
will also be used by Java 8's lambda support.

Perl 6 in 2 minutes

No, not a 2-minute language tutorial

Just enough to give the context in which I've been
using invokedynamic

Perl 6 has an executable specification

With Perl 5, the implementation was the spec

For Perl 6, there is a written specification, though it's
fairly informal. The real, formal, specification is the

standard grammar and a specification test suite.

subset Even of Int where { $_ % 2 == 0 };

{
 my Even $x = 2;
 is $x, 2, 'Can assign value to a subset - typed variable';
};

dies_ok { eval ('my Even $x = 3') },
 "Can't assign value that violates subset type constraint";

Perl 6 is multi-paradigm

multi quicksort([]) {
 ()
}

multi quicksort([$pivot, *@rest]) {
 quicksort(@ rest.grep (* < $pivot)),
 $pivot,
 quicksort(@ rest.grep (* >= $pivot))
}

say join ", ", quicksort([1, - 2, 5, 8, - 6, 3])

Perl 6 is multi-paradigm

multi quicksort([]) {
 ()
}

multi quicksort([$pivot, *@rest]) {
 quicksort(@ rest .grep (* < $pivot)),
 $pivot,
 quicksort(@ rest .grep (* >= $pivot))
}

say join ", ", quicksort([1, - 2, 5, 8, - 6, 3])

Object oriented: everything can be treated as an
object, if you wish to work that way...

Perl 6 is multi-paradigm

Procedural: just because we've classes, roles, and so
forth doesn't mean a function isn't sometimes best!

multi quicksort ([]) {
 ()
}

multi quicksort ([$pivot, *@rest]) {
 quicksort (@rest.grep (* < $pivot)),
 $pivot,
 quicksort (@rest.grep (* >= $pivot))
}

say join ", ", quicksort ([1, - 2, 5, 8, - 6, 3])

Perl 6 is multi-paradigm

Higher order programming: various ways to write
closures, including the * auto-closure syntax

multi quicksort([]) {
 ()
}

multi quicksort([$pivot, *@rest]) {
 quicksort(@ rest.grep (* < $pivot)),
 $pivot,
 quicksort(@ rest.grep (* >= $pivot))
}

say join ", ", quicksort([1, - 2, 5, 8, - 6, 3])

Perl 6 is multi-paradigm

Pattern matching as found in many functional
languages - integrated with multiple dispatch

multi quicksort([]) {
 ()
}

multi quicksort([$pivot, *@rest]) {
 quicksort(@ rest.grep (* < $pivot)),
 $pivot,
 quicksort(@ rest.grep (* >= $pivot))
}

say join ", ", quicksort([1, - 2, 5, 8, - 6, 3])

Perl 6 is gradually typed

You don't have to write any type annotations

But if you do, the compiler will make use of them,
both for optimization and error reporting

my num $distance = get - distance();
my num $time = get - time();
say "Speed = { $distance / $time }";

Perl 6 is gradually typed

You don't have to write any type annotations

But if you do, the compiler will make use of them,
both for optimization and error reporting

For example, knowing both operands are native

floating point numbers, we can compile this division
directly to the VM's floating point division op.

my num $distance = get - distance();
my num $time = get - time();
say "Speed = { $distance / $time }";

Perl 6 lexically scopes language mutation

Yes, you can declare new operators. Here we add a
factorial operator, implemented using reduction on

the multiplication operator.

But it only exists within the scope where it is
declared. Same for language tweaks you import.

{
 sub postfix:<!>($n) { [*] 1..$n }
 say 10!; # Works
}
Outside that scope, no ! operator again

Careful dynamic/static trade-off

Nearly all operators are multi-dispatch sub calls
but

We know the candidate list in a given scope

You can run code during the parse, and do whatever
meta-programming you like

but
Short of a declaration otherwise, we assume you're
done meddling by the time we reach the optimizer

Most dynamic code is eventually static

We often divide languages up into dynamic and
static, but program behaviour is mostly static

Sure, if we don't know the type of $order , then...

...could be going pretty much anywhere

But in reality, even code that is potentially highly
polymorphic from the compile-time view is often

monomorphic at runtime

$order.change_shipping_category (Urgent);

Method calls: what we know in Java

When we compile a method call in Java...

...then we know a few things to help us:

Is order an interface type or a class type?

Does that interface or class have a method with the
name changeShippingCategory ?

If it's a class type, is the method final or not?

order.changeShippingCategory (ShippingCategory.Urgent);

In Java, we know how we don't know

If the method is final, we know where we're going

If the method is not final, and on a class, we don't
know. But we know how we don't know: we'll need

to look in the v-table to find out, at runtime

If the method is on an interface, we also don't know.
But again, we know how we don't know: we'll need
to look in the interfaces table to find out, at runtime

In Java, method dispatch has known unknowns

Optimize away the unknown!

Naively, a virtual method dispatch can JIT-compile
to a lookup into the v-table

But that means we can't inline, which means we can't
do escape analysis and other such optimizations

So, the JIT works out ways it can inline, by doing type

specialization or speculative optimization

Type

Field 1

Field 2

...

Virtual Method 1

Virtual Method 2

...

There are more ways of not knowing

Thus, JIT compilers for so-called static languages
often already optimize away dynamic behaviour

However, the ways to exploit this have been a poor

fit for the unknowns of dynamic languages

Enter invokedynamic

The JVM's invokevirtual and invokeinterface
instructions are ways of "not knowing"

However, they are tied to very particular and

inflexible ways of finding out

The new invokedynamic instruction is also a way of
indicating we don't know what to do

However, it does not specify a resolution

mechanism. Instead, we can provide the answer!

The basic mechanism (1)

A given usage of invokedynamic specifies a
bootstrap method, which decides what to do

Whenever we encounter an invokedynamic

instruction for the first time, the bootstrap is called

aload_1
aload_2
invokedynamic #42

Constant pool entry
identifying bootstrap method

Bootstrap
Method

The basic mechanism (2)

For each invokedynamic instruction in the bytecode,
the JVM can store a reference to a CallSite object

A CallSite specifies a target method reference,

which indicates what should be called in the future

aload_1
aload_2
invokedynamic #42

Constant pool entry
identifying bootstrap method

Bootstrap
Method

Empty!

The basic mechanism (3)

The bootstrap method creates a CallSite . There are
various kinds: constant, mutable, volatile.

This is then returned from the bootstrap method,

and installed in the callsite slot by the JVM

aload_1
aload_2
invokedynamic #42

Constant pool entry
identifying bootstrap method

Bootstrap
Method

CS

The basic mechanism (4)

The next time we encounter that invokedynamic
instruction, we simply call whatever method the

callsite's target indicates

May change over time for mutable/volatile sites

aload_1
aload_2
invokedynamic #42 CS Just

call it

Wait, what's a method handle?

A reference to a method, incorporating information
about its parameter types and return type

Wait, what's a method handle?

A reference to a method, incorporating information
about its parameter types and return type

Well, actually, a reference to something we can

invoke, with parameter and return type information

Wait, what's a method handle?

A reference to a method, incorporating information
about its parameter types and return type

Well, actually, a reference to something we can

invoke, with parameter and return type information

In fact, a reference to a thingy that somehow turns
values of certain types into a result of a given type

Wait, what's a method handle?

A reference to a method, incorporating information
about its parameter types and return type

Well, actually, a reference to something we can

invoke, with parameter and return type information

In fact, a reference to a thingy that somehow turns
values of a certain type into a result of a given type

Actually, it's this non-specificity that makes it such a

powerful mechanism!

Case studies

To make this a little more concrete, let's consider
two cases where I've used invokedynamic while

working on the Perl 6 JVM support

Referencing meta-objects

Declarations of classes, attributes and methods
result in meta-objects, created at compile time

The meta-type used for class can be changed in a
given lexical scope, however. For example, you may
use a module that extends classes with AOP support.

class Meeting {
 has $. start_time ;
 has $.duration;

 method end_time () {
 $. start_time + $.duration
 }
}

The problem

This, and other features, mean that we need a way
for arbitrary objects created during compile time to

survive and be referred to at runtime

There can easily be a process boundary here

Can also have cross-references to objects that are
persisted in other compilation units

Way, way beyond what we can expect the JVM's

constant pool to cope with

Possible solutions

Store all referenced things in comp-unit fields
Can make them final, so JVM knows they won't

change. But need to populate fields - used or not -
or emit some kind of thunk code to do it. Possible,

though it's a little messy.

Store all referenced things in an array
Again, needs setup. Doesn't lead to a huge fields
table, however. Problem is how to indicate that

elements in an array won't change. Limits how well
the JVM can optimize things?

Let's use invokedynamic!

To locate the value, we need a string which is the
unique ID of the compilation unit the object was

declared and serialized in, and an index

We load these onto the stack. Thus, the bootstrap
method needs to install something that will take
these two identifiers and resolve them, leaving an

object on the stack afterwards.

ldc [String "A3FE2B..."] // Comp unit ID
ldc [int 42] // Object index
invokedynamic [Bootstrap.wval]

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
 MethodType type) {
 ...
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
 MethodType type) {
 try {
 ...
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
 MethodType type) {
 try {
 /* Look up wval resolver method. */
 MethodType resType = MethodType.methodType (P6Object.class,
 MutableCallSite.class , String.class , int.class);
 ...
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
 MethodType type) {
 try {
 /* Look up wval resolver method. */
 MethodType resType = MethodType.methodType (P6Object.class,
 MutableCallSite.class , String.class , int.class);
 MethodHandle res = caller.findStatic (Bootstrap.class ,
 " wvalResolve ", resType);
 ...
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
 MethodType type) {
 try {
 /* Look up wval resolver method. */
 MethodType resType = MethodType.methodType (P6Object.class,
 MutableCallSite.class , String.class , int.class);
 MethodHandle res = caller.findStatic (Bootstrap.class ,
 " wvalResolve ", resType);

 /* Create mutable callsite , curry resolver with it. */
 MutableCallSite cs = new MutableCallSite (type);
 ...
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
 MethodType type) {
 try {
 /* Look up wval resolver method. */
 MethodType resType = MethodType.methodType (P6Object.class,
 MutableCallSite.class , String.class , int.class);
 MethodHandle res = caller.findStatic (Bootstrap.class ,
 " wvalResolve ", resType);

 /* Create mutable callsite , curry resolver with it. */
 MutableCallSite cs = new MutableCallSite (type);
 cs.setTarget (MethodHandles.insertArguments (res, 0, cs));
 return cs;
 } catch (Exception e) {
 throw new RuntimeException (e);
 }
}

Let's use invokedynamic!

Finally, the resolver method

public static P6Object wvalResolve (MutableCallSite cs,
 String sc, int idx) {
 ...
}

Let's use invokedynamic!

Finally, the resolver method

public static P6Object wvalResolve (MutableCallSite cs,
 String sc, int idx) {
 /* Look up the WVal. */
 P6Object res = GlobalCtx.scs.get (sc). root_objects.get (idx);
 ...
}

Let's use invokedynamic!

Finally, the resolver method

public static P6Object wvalResolve (MutableCallSite cs,
 String sc, int idx) {
 /* Look up the WVal. */
 P6Object res = GlobalCtx.scs.get (sc). root_objects.get (idx);

 /* Update this callsite , so that we never run the lookup again
 * and instead just always use the resolved object. Discards
 * incoming arguments, as they are no longer needed. */
 cs.setTarget (
 MethodHandles.constant (P6Object.class, res));
 ...
}

Let's use invokedynamic!

Finally, the resolver method

public static P6Object wvalResolve (MutableCallSite cs,
 String sc, int idx) {
 /* Look up the WVal. */
 P6Object res = GlobalCtx.scs.get (sc). root_objects.get (idx);

 /* Update this callsite , so that we never run the lookup again
 * and instead just always use the resolved object. Discards
 * incoming arguments, as they are no longer needed. */
 cs.setTarget (MethodHandles.dropArguments (
 MethodHandles.constant (P6Object.class, res) ,
 0, String.class , int.class));
 ...
}

Let's use invokedynamic!

Finally, the resolver method

public static P6Object wvalResolve (MutableCallSite cs,
 String sc, int idx) {
 /* Look up the WVal. */
 P6Object res = GlobalCtx.scs.get (sc). root_objects.get (idx);

 /* Update this callsite , so that we never run the lookup again
 * and instead just always use the resolved object. Discards
 * incoming arguments, as they are no longer needed. */
 cs.setTarget (MethodHandles.dropArguments (
 MethodHandles.constant (P6Object.class, res),
 0, String.class , int.class));

 /* Hand back the resulting object, for this first call. */
 return res;
}

MethodHandle combinators

The invokedynamic instruction is just a way of
saying, "I don't know"

 We supply the answer using method handles

The MethodHandles class has many static methods

that are either factories or combinators

MethodHandles. dropArguments (
 MethodHandles. constant (P6Object.class, res),
 0, String.class , int.class)

Combinator Factory

