Ifg invoke dynamic to teach
the JVM a new language

Things | work on

J’ Development and Mentorship

Writing and teaching Lead developer and
courses, mostly about architect of theRakudo
software architecture, Perl 6 compiler; focus

TDD and C# on OO, type system, etc
Various bits of Various other
mentoring and contributions (native

consulting calling, debugger, ...)

Bringing Perl 6 to the JVM

Over the last year, I've been working on bringin
Perl 6 to the Java Virtual Machine

Many languages have a JVM port these days
In JDK7, thenvokedynamitnstruction was added
Its initial aim was to help those writing compilers

languages of a more dynamic nature. However,
will also be used by Java 8's lambda support.

Perl 6 iIn 2 minutes

No, not a Zminute language tutorial

Just enough to give the context in which I've bee
using invokedynamic

Perl 6 has an executable specificatior

subset Evenof Int where{$ %2==0};

{
my Even $x = 2;
is $x, 2, 'Can assign value to a subset - typed variable’,

%

dies ok { eval (‘'my Even $x = 3"},
"Can't assign value that violates subset type constraint”;

With Perl 5, the implementation was the spec

For Perl 6, there is a written specification, though
fairly informal. The real, formal, specification is tt
standard grammand aspecification test suite

Perl 6 is mukparadigm

multi quicksort([]) {

0
}

multi quicksort([$pivot, *@rest]) {
quicksort(@ rest.grep (* < $pivot)),
$pivot,
quicksort(@ rest.grep (* >= $pivot))

}

say join ", ", quicksort([1, -2,5, 8, -6, 3])

Perl 6 is mukparadigm

multi quicksort([]) {

0
}

multi quicksort([$pivot, *@rest]) {
quicksort(@ rest .grep (* < $pivot)),
$pivot,
quicksort(@ rest .grep (* >= $pivot))

}

say join ", ", quicksort([1, -2,5, 8, -6, 3])

Object oriented: everything can be treated as al
object, if you wish to work that way...

Perl 6 is mukparadigm

multi quicksort ([]) {

0
}

multi quicksort ([$pivot, *@rest]) {
quicksort (@rest.grep (* < $pivot)),
$pivot,
quicksort (@est.grep (* >= $pivot))

}

say join ",", quicksort ([1, -2,5,38, -6, 3])

Procedural: just because we've classes, roles, ar
forth doesn't mean a function isn't sometimes be

Perl 6 is mukparadigm

multi quicksort([]) {

0
}

multi quicksort([$pivot, *@rest]) {
quicksort(@ rest.grep (* <$pivot)),
$pivot,
quicksort(@ rest.grep (* >=S$pivot))

}

say join ", ", quicksort([1, -2,5, 8, -6, 3])

Higher order programming: various ways to writ
closures, including the * autbosure syntax

Perl 6 is mukparadigm

multi quicksort([l){

0
}

multi quicksort([$pivot, *@rest]) {
quicksort(@ rest.grep (* < $pivot)),
$pivot,
quicksort(@ rest.grep (* >= $pivot))

}

say join ", ", quicksort([1, -2,5, 8, -6, 3])

Pattern matching as found in many functional
languages integrated with multiple dispatch

Perl 6 is gradually typed

my num $distance = get - distance();
my num $time = get -time();
say "Speed = { $distance / $time }";

You don't have to write any type annotations

But if you do, the compiler will make use of then
both for optimization and error reporting

Perl 6 is gradually typed

my num $distance = get - distance();
my num $time = get - time();
say "Speed ={ $distance / $time |

You don't have to write any type annotations

But if you do, the compiler will make use of then
both for optimization and error reporting

For example, knowing both operands are native
floating point numbers, we can compile this divisi
directly to the VM's floating point division op.

Perl 6 lexically scopes language mutati

{
sub postfix:<!>($n) {[*] 1..$n }

say 10!; # Works
}

QOutside that scope, no ! operator again

Yes, you can declare new operators. Here we ac
factorial operator, implemented using reduction C
the multiplication operator.

But it only exists within the scope where it is
declared. Same for language tweaks you impor

Careful dynamic/static tradeff

Nearly all operators are mutlispatch sub calls
but
We know the candidate list in a given scope

You can run code during the parse, and do whate
metaprogramming you like
but
Short of a declaration otherwise, we assume yoL
done meddling by the time we reach the optimize

Most dynamic code is eventually stati

We often divide languages up into dynamic anc
static, but program behaviour is mostly static

Sure, if we don't know the typesofder , then...

$order.change_shipping_category (Urgent);

...could be going pretty much anywhere

But in reality, even code that is potentially highl
polymorphic from the compHame view is often
monomorphic at runtime

Method calls: what we know in Java

When we compile a method call in Java...

order.changeShippingCategory (ShippingCategory.Urgent);

...then we know a few things to help us:
Isorder aninterfacetype or aclasdype?

Does that interface or class have a method with 1
namechangeShippingCategory ?

If it's a class type, is the metliwcil or not?

In Java, we know how we don't know

If the method is final, we know where we're goin

If the method is not final, and on a class, we dor
know. Butve know how we don't knowe'll need
to look in the mable to find out, at runtime

If the method is on an interface, we also don't knc
But againywe know how we don't knowve'll need
to look in the interfaces table to find out, at runtimr

In Java, method dispatch kaswn unknowns

Optimize away the unknown!

Naively, a virtual method dispatch cancdmpile
to a lookup into the-¥able

<

Field 1 Virtual Method 1
Field2 Virtual Method 2

But that means wean't inline which means we can
do escape analysis and other such optimizatior

So, the JIT works out ways it can inline, by dgieg
specializatioror speculative optimization

There are more ways of not knowing

Thus, JIT compilers forecalled static languages
oftenalready optimize away dynamic behaviour

However, the ways to exploit this have been a pc
fit for the unknowns of dynamic languages

Enter invokedynamic

The JVM'Bvokevirtual andinvokeinterface
instructions are ways of "not knowing"

However, they are tied to versrticular and
inflexibleways of finding out

The newnvokedynamic Instruction is also a way o
indicating we don't know what to do

However, it does not specify a resolution
mechanism. Insteage can provide the answer

The basic mechanism (1)

A given usage of invokedynamic specifies a
bootstrap methogwhich decides what to do

Whenever we encounter an invokedynamic
iInstruction for thdirst time the bootstrap is called

aload 1
aload_2 C/a“7 Bootstrap
invokedynam i;ﬁz Method

Constant pool entry
identifying bootstrap method

The basic mechanism (2)

For each invokedynamic instruction inlgeecode
the JVM can store a reference tozéSite object

A CallSitespecifies @arget method referenge
which indicates what should be called in the futu

aload 1
aload_2 C/a“7 Bootstrap
A invokedynam i;ﬁz Method

Empty!
Constant pool entry
identifying bootstrap method

The basic mechanism (3)

The bootstrap method createsalsite . There are

various kinds: constant, mutable, volatile.

This is then returned from the bootstrap method

CS

aload 1
aload 2
invokedynamic #42

and installed in theallsiteslot by the JVM

cal Bootstrap
/7 Method

(s CallSite

Constant pool entry

Retuf

identifying bootstrap method

The basic mechanism (4)

The next time we encounter that invokedynamic
instruction, we simply call whatever method the
callsite'darget indicates

May change over time for mutable/volatile sites

aload 1
aload 2

invokedynamic #42

Just

\ /’ call it

Wait, what's a method handle?

Areference to a methqdncorporating information
about its parameter types and return type

Wait, what's a method handle?

Areference to a methqdncorporating information
about its parameter types and return type

Well, actually, a reference stmmething we can
Invoke with parameter and return type informatio|

Wait, what's a method handle?

Areference to a methqdncorporating information
about its parameter types and return type

Well, actually, aeference to something we can
Invoke with parameter and return type informatio|

In fact, areference to a thingthat somehow turns
values of certain types into a result of a given ty}

Wait, what's a method handle?

Areference to a methqdncorporating information
about its parameter types and return type

Well, actually, aeference to something we can
Invoke with parameter and return type informatio|

In fact, areference to a thingthat somehow turns
values of a certain type into a result of a given ty

Actually, it's this neBpecificity that makes it such :
powerful mechanism!

Case studies

To make this a little more concrete, let's conside
two cases where I've used invokedynamic whil
working on the Perl 6 JVM support

Referencing metabjects

Declarations of classes, attributes and method
result inmeta-objects created atompile time

class Meeting {
has $. start_time ;
has $.duration;

method end_time () {
$. start_time + $.duration

}

}

Themetatype used fotlass can be changeih a
given lexical scope, however. For example, you r
use a module that extends classes with AOP sup

The problem

This, and other features, mean that we need a w
for arbitrary objectereated during compile time to
survive and be referred to at runtime

There can easily be a process boundary here

Can also have cres=ferences to objects that are
persisted in other compilation units

Way, way beyond what we can expect the JVM
constant pool to cope with

Possible solutions

Store all referenced things in corapit fields
Can make them final, so JVM knows they won'
change. But need to populate fieldssed or not
or emit some kind dhunkcode to do it. Possible,
though it's a little messy.

Store all referenced things in an array
Again, needs setup. Doesn't lead to a huge fielc
table, however. Problem is how to indicate that
elements in an array won't change. Limits how w
the JVM can optimize things?

Let's use invokedynamic!

To locate the value, we need a string which is tt
unique ID of the compilation unit the object was
declared and serialized in, and an index

We load these onto the stack. Thus, the bootstr:

method needs to install something that will take

these two identifiers and resolve them, leaving &
object on the stack afterwards.

ldc [String "A3FE2B..."] /I Comp unit ID
ldc [Int 42] // Object index
invokedynamic [Bootstrap.wval |

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
MethodType type) {

}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
MethodType type) {

try {

} catch (Exception e) {
throw new RuntimeException (e);

}
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,
MethodType type) {
try {
[* Look up wval resolver method. */
MethodType resType = MethodType.methodType (P60Dbject.class,
MutableCallSite.class , String.class , int.class);

} catch (Exception e) {
throw new RuntimeException (e);

}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,

MethodType type) {
try {
[* Look up wval resolver method. */

MethodType resType = MethodType.methodType (P60Dbject.class,

MutableCallSite.class , String.class , int.class);
MethodHandle res = caller.findStatic (Bootstrap.class
"wvalResolve ", resType);

} catch (Exception e) {
throw new RuntimeException (e);
}

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,

MethodType type) {

try {

[* Look up wval resolver method. */

MethodType resType = MethodType.methodType (P60Dbject.class,
MutableCallSite.class , String.class , int.class);

MethodHandle res = caller.findStatic (Bootstrap.class
"wvalResolve ", resType);

[* Create mutable callsite , curry resolver with it. */
MutableCallSite cs = new MutableCallSite (type);

} catch (Exception e) {

}

throw new RuntimeException (e);

Let's use invokedynamic!

Next up, the bootstrap method

public static CallSite wval (Lookup caller, String name,

MethodType type) {

try {

[* Look up wval resolver method. */

MethodType resType = MethodType.methodType (P60Dbject.class,
MutableCallSite.class , String.class , int.class);

MethodHandle res = caller.findStatic (Bootstrap.class
"wvalResolve ", resType);

[* Create mutable callsite , curry resolver with it. */
MutableCallSite cs = new MutableCallSite (type);

cs.setTarget (MethodHandles.insertArguments (res, O, cs));
return cs;

} catch (Exception e) {

}

throw new RuntimeException (e);

Let's use invokedynamic!

Finally, the resolver method

public static P60bject wvalResolve (MutableCallSite CS,
String sc, int idx) {

}

Let's use invokedynamic!

Finally, the resolver method

public static P60bject wvalResolve (MutableCallSite CS,
String sc, int idx) {
[* Look up the Wval */
P60bjectres = GlobalCtx.scs.get (sc). root_objects.get (idx);

Let's use invokedynamic!

Finally, the resolver method

public static P60bject wvalResolve (MutableCallSite cs,

String sc, int idx){
[* Look up the Wval */
P60bjectres = GlobalCtx.scs.get (sc). root_objects.get (idx);

[* Update this callsite , so that we never run the lookup again
* and instead just always use the resolved object. Discards
* incoming arguments, as they are no longer needed. */
cs.setTarget (

MethodHandles.constant (P60bject.class, res));

Let's use invokedynamic!

Finally, the resolver method

public static P60bject wvalResolve (MutableCallSite CS,
String sc, int idx) {
[* Look up the Wval */
P60bjectres = GlobalCtx.scs.get (sc). root_objects.get (idx);

[* Update this callsite , so that we never run the lookup again
* and instead just always use the resolved object. Discards
* incoming arguments, as they are no longer needed. */

cs.setTarget (MethodHandles.dropArguments (

MethodHandles.constant (P6Object.class, res)
0, String.class ', int.class));

Let's use invokedynamic!

Finally, the resolver method

public static P60bject wvalResolve (MutableCallSite cs,

String sc, int idx){
[* Look up the Wval */
P60bjectres = GlobalCtx.scs.get (sc). root_objects.get (idx);

[* Update this callsite , so that we never run the lookup again
* and instead just always use the resolved object. Discards
* incoming arguments, as they are no longer needed. */
cs.setTarget (MethodHandles.dropArguments (
MethodHandles.constant (P60bject.class, res),
0, String.class , int.class));

[* Hand back the resulting object, for this first call. */
return res;

MethodHandlecombinators

Theinvokedynamic instruction is just a way of
saying, "l don't know"

We supply the answer using method handles

TheMethodHandles class has many static method
that are either factories or combinators

MethodH Object.class, res),

0, String.class , int.class)

Combinator Factory

