
Perl 6: what can you do today?
The state of the butterfly

Jonathan Worthington

Perl 6 in a slide

A new Perl

Multi -paradigm

Gradually typed

Still about getting stuff done

Scales better from script to application

Specified by its test suite and standard grammar

Designed and implemented by a great community

Show, don't tell

We'll take a concrete problem, and use Perl 6 to solve it

See how it copes, and if we get a good solution

I try to use Perl 6 every so often, to get a feel for where
we're at and where the pain points are. For example:

 2012: Implemented Rakudo::Debugger in Perl 6

 2013: Used Perl 6 at a client to do static analysis of

other languages, aiming to find hopefully-dead code and
instrument it with logging. Confidently threw away over

half a million lines in a 3 million line codebase.

Today's problem

There's a lot of interesting free data sets out there

A few weeks ago, I found a huge archive of historical
global temperature data

No, it's not in JSON, or XML. Just structured-ish text. L

Felt like exploring it a little

Typical data-munging task

No agenda, just curiosity

A sample data file

Some meta-data at the top, followed by the average for
each month of the year below a header "Obs:"

Number= 010010
Name= Jan Mayen
Country= NORWAY
Lat = 70.9
Long= 8.7
Height= 10
Start year= 1921
End year= 2009
...
Obs:
1921 - 4.4 - 7.1 - 6.8 - 4.3 - 0.8 2.2 4.7 5.8 2.7 - 2.0 - 2.1 - 4.0
1922 - 0.9 - 1.7 - 6.2 - 3.7 - 1.6 2.9 4.8 6.3 2.7 - 0.2 - 3.8 - 2.6
...
2008 - 2.8 - 2.7 - 4.6 - 1.8 1.1 3.3 6.1 6.9 5.8 1.2 - 3.5 - 0.8
2009 - 2.3 - 5.3 - 3.2 - 1.6 2.0 2.9 6.7 7.2 3.8 0.6 - 0.3 - 1.3

Let's parse it!

Perl has always been great for text processing - but too
often the code becomes a tangle of ad-hoc regexes

Perl 6: break free of the limits of regular languages, by
adding support for grammars

Enable building of well-structured, composable,

extensible, maintainable parsers

Start at the TOP

We create a grammar, and in the special TOP rule
describe the overall structure of the document

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 # ...
}

Number= 010010
Name= Jan Mayen
...
Obs:
1921 - 4.4 - 7.1 - 6.8 - 4.3 - 0.8 2.2 4.7 5.8 2.7 - 2.0 - 2.1 - 4.0
...
2009 - 2.3 - 5.3 - 3.2 - 1.6 2.0 2.9 6.7 7.2 3.8 0.6 - 0.3 - 1.3

Meta-data

Next, parse the key/value pairs; the $<key> syntax makes
a named capture, and [...] is a non-capturing group

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval { $<key>=[\ w+] '=' \ h* $< val >=[\ N+] \ n }
 # ...
}

Number= 010010
Name= Jan Mayen
...
Obs:
1921 - 4.4 - 7.1 - 6.8 - 4.3 - 0.8 2.2 4.7 5.8 2.7 - 2.0 - 2.1 - 4.0
...
2009 - 2.3 - 5.3 - 3.2 - 1.6 2.0 2.9 6.7 7.2 3.8 0.6 - 0.3 - 1.3

Observations

The observations section starts with a literal string,
followed by one or more (years of) observations

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval { $<key>=[\ w+] '=' \ h* $< val >=[\ N+] \ n }
 token observations { ' Obs:' \ h* \ n <observation>+ }
 # ...
}

Number= 010010
Name= Jan Mayen
...
Obs:
1921 - 4.4 - 7.1 - 6.8 - 4.3 - 0.8 2.2 4.7 5.8 2.7 - 2.0 - 2.1 - 4.0
...
2009 - 2.3 - 5.3 - 3.2 - 1.6 2.0 2.9 6.7 7.2 3.8 0.6 - 0.3 - 1.3

Each year's observation

Each line has a year followed by temperatures separated
by whitespace; %% specifies a quantifier separator

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval { $<key>=[\ w+] '=' \ h* $< val >=[\ N+] \ n }
 token observations { ' Obs:' \ h* \ n <observation>+ }
 token observation { $<year>=[\ d+] \ h* <temp>+ %% [\ h*] \ n }
 # ...
}

Number= 010010
Name= Jan Mayen
...
Obs:
1921 - 4.4 - 7.1 - 6.8 - 4.3 - 0.8 2.2 4.7 5.8 2.7 - 2.0 - 2.1 - 4.0
...
2009 - 2.3 - 5.3 - 3.2 - 1.6 2.0 2.9 6.7 7.2 3.8 0.6 - 0.3 - 1.3

Start at the TOP

Finally, we need a simple token that will match a
temperature; little new except using quoting syntax

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval { $<key>=[\ w+] '=' \ h* $< val >=[\ N+] \ n }
 token observations { ' Obs:' \ h* \ n <observation>+ }
 token observation { $<year>=[\ d+] \ h* <temp>+ %% [\ h*] \ n }
 token temp { ' - '? \ d+ \ . \ d+ }
}

Number= 010010
Name= Jan Mayen
...
Obs:
1921 - 4.4 - 7.1 - 6.8 - 4.3 - 0.8 2.2 4.7 5.8 2.7 - 2.0 - 2.1 - 4.0
...
2009 - 2.3 - 5.3 - 3.2 - 1.6 2.0 2.9 6.7 7.2 3.8 0.6 - 0.3 - 1.3

Will it work?

Using our grammar to parse a file is just a case of calling
its parsefile method, passing a file name:

And...

say StationDataParser.parsefile ('data/01/010010');

Will it work?

Using our grammar to parse a file is just a case of calling
its parsefile method, passing a file name:

And...

say StationDataParser.parsefile ('data/01/010010');

#<failed match>

Will it work?

Using our grammar to parse a file is just a case of calling
its parsefile method, passing a file name:

And...

say StationDataParser.parsefile ('data/01/010010');

#<failed match>

How on earth to debug this?

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval {
 $<key>=[\ w+] '=' \ h* $< val >=[\ N+] \ n
 { say "Got $<key> and $< val >" }
 }
}

How on earth to debug this?

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval {
 $<key>=[\ w+] '=' \ h* $< val >=[\ N+] \ n
 { say "Got $<key> and $< val >" }
 }
}

Dammit, man, just
use the debugger!

The debugger

Built specially for Perl 6, and written in Perl 6

Happily copes with stepping through...

BEGIN-time
EVAL'd code

macros
regexes

grammars

Let's try it!

<STOP! Demo time!>

A tree for free

The structure of the grammar is used to make us a tree of
match objects (which work like arrays and hashes), which

we might even use directly to mine the data!

my $parsed = StationDataParser.parsefile ('data/01/010010');

my $lowest = Inf ;
my $highest = - Inf ;
for $parsed<observations><observation> - > $ ob {
 for $ ob<temp> - > $t {
 $lowest min= +$t;
 $highest max= +$t;
 }
}

say "Lowest: $lowest, Highest: $highest";

Lowest: - 14.5, Highest: 8

Great for a quick hack, but...

The tree we've got isn't too bad to pull data out of

However, if our grammar changes, so may the tree

Also, the parse tree keeps lots of information that we
may not need, or the structure it provides may not be an

ideal one for the way we want to use the data

So, we'll turn to...

Perl 6's object system (to create a nicer model)

Parse actions (to map from grammar to that model)

A StationData class

We'll declare a class to hold the data we find most
interesting from each weather station

All attributes in Perl 6 are private, and named $!foo

However, if we declare then with as $.foo instead then a
public read-only accessor is generated for us

class StationData {
 has $.name;
 has $.country;
 has @.data;

 # Interesting methods come here...
}

Actions class

Has methods named after the tokens in the grammar

Will be called on a successful match, passing the
appropriate piece of the tree as an argument

class StationDataActions {
 method TOP($/) {
 ...
 }
 method keyval ($/) {
 ...
 }
 method observations($/) {
 ...
 }
 method observation($/) {
 ...
 }
}

Keys and values

Produce a Pair for each key/value pair

Note that the ~ prefix operator grabs the text string that
was matched, so we don't store the entire Match object

class StationDataActions {
 method TOP($/) {
 ...
 }
 method keyval ($/) {
 make ~$<key> => ~$< val >;
 }
 method observations($/) {
 ...
 }
 method observation($/) {
 ...
 }
}

A year's observation

Produce a Pair mapping a year to a list of temperatures

The + prefix numifies; we when take each temperature
Match object and coerce it to a Num

class StationDataActions {
 method TOP($/) {
 ...
 }
 method keyval ($/) {
 make ~$<key> => ~$< val >;
 }
 method observations($/) {
 ...
 }
 method observation($/) {
 make +$<year> => $<temp>.map(*. Num);
 }
}

All the observations

Become a list of Pairs of year and temperatures

Note that .ast gets the thing observation stored with
make; we filter out years with any invalid readings

class StationDataActions {
 method TOP($/) {
 ...
 }
 method keyval ($/) {
 make ~$<key> => ~$< val >;
 }
 method observations($/) {
 make $<observation>.map(*. ast). grep (*. value.none <= - 99);
 }
 method observation($/) {
 make +$<year> => $<temp>.map(*. Num);
 }
}

Constructing StationData

Finally, we bring it all together to make a StationData

class StationDataActions {
 method TOP($/) {
 make StationData.new (
 info => $< keyval >.map(*. ast).hash,
 data => $<observations>. ast
);
 }
 method keyval ($/) {
 make ~$<key> => ~$< val >;
 }
 method observations($/) {
 make $<observation>.map(*. ast). grep (*. value.none <= - 99);
 }
 method observation($/) {
 make +$<year> => $<temp>.map(*. Num);
 }
}

Object construction

We've one remaining task: to map the named arguments
we provide in object construction to the attributes

Here's a fairly simple way to go about this

class StationData {
 has $.name;
 has $.country;
 has @.data;

 submethod BUILD(:%info, :@data) {
 $!name = %info<Name>;
 $!country = %info<Country>;
 @!data = @data;
 }
}

Attributive parameters

If we're feeling lazy, though, there's a few shortcuts

First, we can specify that we want to bind the data
parameter directly to the attribute

class StationData {
 has $.name;
 has $.country;
 has @.data;

 submethod BUILD(:%info, :@!data) {
 $!name = %info<Name>;
 $!country = %info<Country>;
 @!data = @data;
 }
}

Unpacking

Second, we can exploit data structure unpacking

We pull out the Name and Country keys, and have them
bound directly to the appropriate attributes

class StationData {
 has $.name;
 has $.country;
 has @.data;

 submethod BUILD(
 :%info (:Name($!name), :Country($!country), *%) ,
 :@!data) {
 $!name = %info<Name>;
 $!country = %info<Country>;
 }
}

Using the actions

The actions can be passed as an extra argument to the
parsefile method

The ast method on the final result is used to get the
StationData instance made by TOP

And...it works!

say StationDataParser.parsefile (
 'data/01/010010',
 :actions(StationDataActions)). ast ;

StationData.new (name => "Jan Mayen", country => "NORWAY", data =>
Array.new (1921 => (- 4.4e0, - 7.1e0, - 6.8e0, - 4.3e0, - 0.8e0, 2.2e0,
4.7e0, 5.8e0, 2.7e0, - 2e0, - 2.1e0, - 4e0). list.item , 1922 => (-
0.9e0, - 1.7e0, - 6.2e0, - 3.7e0, - 1.6e0, 2.9e0, 4.8e0, 6.3e0, 2.7e0,
- 0.2e0, - 3.8e0, - 2.6e0). list.item , ...))

So far...

36 lines of
code (including

whitespace)

A nice parser

A basic model
class

Action

methods to
perform a
mapping

grammar StationDataParser {
 token TOP { ^ < keyval >+ <observations> $ }
 token keyval { $<key>=[< - [=]>+] '=' \ h* $< val >=[\ N+] \ n }
 token observations { ' Obs:' \ h* \ n <observation>+ }
 token observation { $<year>=[\ d+] \ h* <temp>+ %% [\ h*] \ n }
 token temp { ' - '? \ d+ \ . \ d+ }
}

class StationData {
 has $.name;
 has $.country;
 has @.data;

 submethod BUILD(:%info (:Name($!name), :Country($!country), *%), :@!data) {
 }
}

class StationDataActions {
 method TOP($/) {
 make StationData.new (
 info => $< keyval >.map(*. ast).hash,
 data => $<observations>. ast
);
 }
 method keyval ($/) {
 make ~$<key> => ~$< val >;
 }
 method observations($/) {
 make $<observation>.map(*. ast). grep (*. value.none <= - 99);
 }
 method observation($/) {
 make +$<year> => $<temp>.map(*. Num);
 }
}

say StationDataParser.parsefile ('data/01/010010', :actions(StationDataActions)). ast ;

Yearly means

We'd like to produce a graph of the mean temperature
each year for a station

We create a method that will calculate them...

class StationData {
 ...

 method year_means() {
 ...
 }
}

Yearly means

We'd like to produce a graph of the mean temperature
each year for a station

...define inside it a (lexical) mean sub...

class StationData {
 ...

 method year_means() {
 sub mean(@values) {
 [+](@values) / @values
 }
 ...
 }
}

Yearly means

We'd like to produce a graph of the mean temperature
each year for a station

...and map each data pair to a pair of year and mean.

class StationData {
 ...

 method year_means() {
 sub mean(@values) {
 [+](@values) / @values
 }
 @!data.map (- > $ year_pair {
 $year_pair.key => mean $ year_pair.value
 });
 }
}

What's the plot for graphs?

I really don't want to write my own graph plotter

What's the plot for graphs?

I really don't want to write my own graph plotter

modules.perl6.org to the rescue!

Producing a graph

Use the SVG and SVG::Plot modules:

Then use it to produce a graph of the yearly means:

use SVG;
use SVG::Plot;

my $station = StationDataParser.parsefile ('data/01/010010',
 :actions(StationDataActions)). ast ;
my @means = $station.year_means ;

spurt " means.svg", SVG.serialize (SVG:: Plot.new (
 width => 600,
 height => 350,
 x => @ means.map(*.key),
 values => [[@ means.map(*.value)]],
 title => $station.name
).plot(: xy- lines));

The first temperature graph

Here is the result:

Statistics by country

It would be interesting to look at yearly means of an
entire country

This can be computed by finding the mean of the mean

temperatures for all stations in the country

We can start by defining a CountryData class:

class CountryData {
 has $.name;
 has @.stations;

 submethod BUILD(:$!name, :@!stations) { }
}

Many stations, categorized by country

We now start to read in all of the station files in a
directory, getting a StationData for each one

These can then be categorized by country, and a
CountryData constructed for each one

my @stations = do for dir ('data/01') - > $file {
 StationDataParser.parsefile ($file,
 :actions(StationDataActions)). ast ;
};

my @countries = do for @ stations.categorize (*.country) {
 CountryData.new (name => .key, stations => .value)
}

Duplicate the yearly means code?

Calculating the yearly means over a bunch of stations will
clearly be a bit different than doing it for one

We could implement it separately in both StationData
and CountryData...but once we start calculating other

things, it will be a lot of duplication L

Insight:
Handling data for just one station is a special case of

handling data for many stations

This will allow us to factor out the yearly means code J

StationData provides one data set

The StationData class is updated with a datasets method,
which packages its single set of data up in an array

class StationData {
 has $.name;
 has $.country;
 has @.data;

 submethod BUILD(
 :%info (:Name($!name), :Country($!country), *%),
 :@!data) { }

 method datasets() { [@.data] }
}

CountryData provides many data sets

Meanwhile, CountryData maps the data sets out of each
of the stations, caching this work in an attribute

The attribute gets a public accessor, meaning that there is
also a datasets method available

class CountryData {
 has $.name;
 has @.stations;
 has @.datasets;

 submethod BUILD(:$!name, :@!stations) {
 @!datasets = @! stations.map (*. data.item);
 }
}

Where to put year_means?

In a common base class, maybe?

Where to put year_means?

In a common base class, maybe?

Inheritance is a mechanism for specialization and
extension, and classes are about responsibility

Perl 6 provides us with roles for code re-use

Yearly statistics calculations go in a role

The code for year_means is moved into a role, and
updated to work over many datasets

role YearlyStatistics {
 method year_means() {
 sub mean(@values) {
 [+](@values) / @values
 }
 my %station_means ;
 for self.datasets - > @year_pairs {
 for @ year_pairs {
 my ($year, $temps) = .key, .value;
 push %station_means {$year}, mean $temps;
 }
 }
 %station_means.sort (*.key).map({ $_.key => mean $_.value })
 }
}

Doing the role

Roles are incorporated into classes using does

This performs flattening composition, meaning any
methods in the role are "copied" into the class

If you compose two roles that try to bring in a method of

the same name, it is a compile-time error

class StationData does YearlyStatistics {
 ...
}

class CountryData does YearlyStatistics {
 ...
}

The graph

Here it is!

The graph

Apparently, Norway has been cooling massively!

Lies, dammed lies, and data

We don't have data from every year for every station.
The two big transition points in the graph are in years

where we gain data from new stations.

Norway is a huge country north to south, especially once
you factor in the islands in the Arctic!

> 80° North

< 60° North

