S F

Jonath :
an Worthington s
Ll
“ (.‘.



Perl 6 in a slide

A new Perl
Multi-paradigm
Gradually typed
Still about getting stuff done
Scales better from script to application
Specified by its test suite and standard grammar

Designed and implemented by a great community



Show, don't tell

We'll take a concrete problem, and use Perl 6 to solve 1
See how It copes, and if we get a good solution

| try to use Perl Gvery so oftento get a feel for where
we're at and where the pain points are. For example:

2012:ImplementedRakudo:Debugger in Perl 6

2013:Used Perl 6 at a client to do static analysis of

other languages, aiming to find hopefullgiead code and

Instrument it with logging. Confidently threw away over
half a million lines in a 3 million line codebase.



Today's problem

There's a lot of interesting free data sets out there

A few weeks ago, | found a huge archive of historical
global temperature data

No, it's not in JSON, or XML. Just structunsa text. L
Felt like exploring it a little
Typical datamungingtask

No agenda, just curiosity



A sample data file

Some metadata at the top, followed by the average for
each month of the year below a headefObs"

Number= 010010
Name= Jan Mayen
Country= NORWAY

Lat= 70.9
Long= 8.7
Height= 10

Start year= 1921
End year= 2009

Obs

1921 -44 -71 -6.8 -43 -08 2.2 4.7 5.8 2.7 -20 -21 -40
1922 -09 -1.7 -6.2 -3.7 -16 29 48 6.3 2.7 -0.2 -38 -2.6
2008 -28 -2.7 -46 -18 11 3.3 6.1 6.9 5.8 1.2 -3.5 -0.8

2009 -23 -53 -32 -16 20 29 6.7 7.2 3.8 0.6 -0.3 -1.3




Let's parse it!

Perl has always been great for text processHigut too
often the code becomes a tangle of dwbc regexes

Perl 6: break free of the limits of regular languages, by
adding support for grammars

Enable building of weibktructured, composable
extensible, maintainable parsers



Start at the TOP

We create a grammar, and in the special TOP rule
describe the overall structure of the document

grammar StationDataParser  {
token TOP { < keyval >+ <observations> $ }

Number= 010010
Name= Jan Mayen

Obs
1921 -44 -7.1 -6.8 -43 -0.8 22 4.7 5.8 2.7 -2.0 -21 -4.0

2009 -2.3 -53 -3.2 -16 20 29 6.7 7.2 3.8 0.6 =02 =L




Meta-data

Next, parse the key/value pairs; thé<key>syntax makes
a hamed capture, andgl..] is a norcapturing group

grammar StationDataParser

{

token TOP {~"<

keyval >+ <observations> $

}

token keyval

{ $<key>=[ \w+]'=

# ...

\ h*$< val >=[\N+] \n }

Number 010010
Name Jan Mayen

Obs

1921 -44 -71 -6.8 -43 -08 2.2 4.7 5.8 2.7 -20 -21 -4.0
2009 -23 -53 -32 -16 20 29 6.7 7.2 3.8 0.6 -0.3 -1.3




Observations

The observations section starts with a literal string,
followed by one or more (years of) observations

grammar StationDataParser  {

token TOP {r< keyval >+ <observations> $ }
token keyval { $<key>=[ \w+]'=" \h*$<val >=[\N+] \n }
token observations { "' Obs' \h* \n<observation>+ }

Number= 010010
Name= Jan Mayen

Obs
1921 -44 -7.1 -6.8 -43 -0.8 22 4.7 5.8 2.7 -2.0 -21 -4.0

2009 -2.3 -53 -3.2 -16 20 29 6.7 7.2 3.8 0.6 =02 =L




Each year's observation

Each line has a year followed by temperatures separate
by whitespace%%specifies a quantifier separator

grammar StationDataParser  {
token TOP {r< keyval >+ <observations> $ }
token keyval { $<key>=[ \w+]'=" \h*$<val >=[\N+] \n }
token observations {' Obs' \h* \n<observation>+ }
token observation { $<year>=[ \d+] \ h* <temp>+ %% [ \h*] \n}
#...

Number= 010010
Name= Jan Mayen

Obs
1921 -44 -7.1 -6.8 -43 -08 22 4.7 58 2.7 -20 -21 -4.0

2009 -2.3 -53 -3.2 -16 20 29 6.7 7.2 3.8 0.6 =02 =L




Start at the TOP

Finally, we need a simple token that will match a
temperature; little new except using quoting syntax

grammar StationDataParser  {
token TOP {r< keyval >+ <observations> $ }
token keyval { $<key>=[ \w+]'=" \h*$<val >=[\N+] \n }
token observations {' Obs' \h* \n<observation>+ }
token observation { $<year>=[ \d+] \ h* <temp>+ %% [ \h*] \n}
token temp {' -'? \d+ \. \d+ }

Number= 010010
Name= Jan Mayen

Obs
1921 -44 -7.1 -6.8 -43 -0.8 22 4.7 5.8 2.7 -2.0 -21 -4.0

2009 -23 -53 -32 -16 20 29 6.7 7.2 3.8 0.6 -0.3 -1.3




Will it work?

Using our grammar to parse a file is just a case of callin
its parsefilemethod, passing a file name:

say StationDataParser.parsefile ('data/01/010010";

And...



Will it work?

Using our grammar to parse a file is just a case of callin
its parsefilemethod, passing a file name:

say StationDataParser.parsefile ('data/01/010010";

And...

#<failed match>




Will it work?

Using our grammar to parse a file is just a case of callin
its parsefilemethod, passing a file name:

say StationDataParser.parsefile ('data/01/010010";

And...

#<failed match>




How on earth to debug this?

grammar StationDataParser  {
token TOP {~ < keyval >+ <observations> $ }
token keyval {
$<key>=[\w+]'=" \h*$< val >=[\N+] \n
. { say "Got $<key>and $<  val >"} \




How on earth to debug this?

grammar StationDataParser  {
token TOP {~ < keyval >+ <observations> $ }
token keyval {
$<key>=[\w+]'=" \h*$< val >=[\N+] \n
. { say "Got $<key>and $<  val >"} \

QQ Dammit, man, just
use the debugger! f



The debugger

Built specially for Perl 6, and written in Perl 6
Happily copes with stepping through...

BEGINImMe
EVAL'ccode
macros

rei exes

Let's try it!

<STOP! Demo time!>



A tree for free

The structure of the grammar Is used to make us a tree
match objects (which work like arrays and hashes), whic
we might even use directly to mine the data!

my $parsed = StationDataParser.parsefile (‘data/01/010010";

my $lowest = Inf ;
my $highest = - Inf ;
for $parsed<observations><observation> ->%ob {

for$ ob<temp> -> $t{
$lowest min= +$t;
$highest max= +$t;

}

say "Lowest: $lowest, Highest: $highest";

Lowest: -14.5, Highest: 8



Great for a quick hack, but...

The tree we've got isn't too bad to pull data out of
However, if our grammar changes, so may ttiee
Also, the parse tree keeps lots of information that we
may not need, or the structure it provides may not be ar
ideal one for the way we want to use the data
So, we'll turn to...

Perl 6'sobject system(to create a nicer model)

Parseactions(to map from grammar to that model)



A StationDataclass

We'll declare a class to hold the data we find most
Interesting from each weather station

class StationData {
has $.name;
has $.country;
has @.data;

# Interesting methods come here...

}

All attributes in Perl 6 are private, and hamegifoo

However, if we declare then with a$.foo instead then a
public readonly accessors generated for us




Actions class

Has methods named after the tokens in the grammar

class StationDataActions {
method TOP($/) {

}
method keyval ($/) {

}

method observations($/) {

}

method observation($/) {

}

Will be called on a successful match, passing the
appropriate piece of the tree as an argument



Keys and values

Produce a Pair for each key/value pair

class StationDataActions {

}

method TOP($/) {

}
method keyval ($/) {

make ~$<key> => ~$< val >;

}

method observations($/) {

}

method observation($/) {

}

Note that the ~ prefix operator grabs the text string that
was matched, so we don't store the entiriglatch object



A year's observation

Produce a Pair mapping a year to a list of temperatures

class StationDataActions {
method TOP($/) {

}
method keyval ($/) {

make ~$<key> => ~$< val >;
}
method observations($/) {

}

method observation($/) {
make +$<year> => $<temp>.map(*. Nunj;
}

The+ prefix numifies;, we when take each temperature
Match object and coerce it to &lum



All the observations

Become a list of Pairs of year and temperatures

class StationDataActions {
method TOP($/) {

}
method keyval ($/) {

make ~$<key> => ~$< val >;
}

method observations($/) {
make $<observation>.map(*. ast). grep (*. value.none <= -99);
}

method observation($/) {
make +$<year> => $<temp>.map(*. Nun;
}

Note that .astgets the thing observation stored with
make we filter out years with any invalid readings




ConstructingstationData

Finally, we bring it all together to make &tationData

class StationDataActions {
method TOP($/) {
make StationData.new (
info => $< keyval >.map(*. ast ).hash,
data => $<observations>. ast

);
}
method keyval ($/) {

make ~$<key> => ~$< val >;
}

method observations($/) {
make $<observation>.map(*. ast). grep (*. value.none <= -99);
}

method observation($/) {
make +$<year> => $<temp>.map(*. Nun),
}




Object construction

We've one remaining task: to map the named argument:
we provide In object construction to the attributes

Here's a fairly simple way to go about this

class StationData {
has $.name;
has $.country;
has @.data;

submethod BUILD(:%info, :@data) {
$'name = %info<Name>;
$!country = %info<Country>;
@!data = @data;




Attributive parameters

If we're feeling lazy, though, there's a few shortcuts

First, we can specify that we want to bind the data
parameter directly to the attribute

class StationData {
has $.name;
has $.country;
has @.data;

submethod BUILD(:%info, :@!data ) {
$'name = %info<Name>;
$!country = %info<Country>;




Unpacking

Second, we can exploit data structure unpacking

We pull out the Name and Country keys, and have then
bound directly to the appropriate attributes

class StationData {
has $.name;
has $.country;
has @.data;

submethod BUILD(
:%info  (:Name($!name), :Country($!country), *%)

.@!data) {




Using the actions

The actions can be passed as an extra argument to the
parsefilemethod

say StationDataParser.parsefile (
‘data/01/010010",
-actions( StationDataActions )). ast;

Theast method on the final result is used to get the
StationDatainstance made by TOP

And...it works!

StationData.new (name =>"Jan Mayer, country =>"NORWAY", data =>
Array.new (1921 =>( -4.4e0, -7.1e0, -6.8e0, -4.3e0, -0.8e0, 2.2¢e0,

4.7e0, 5.8e0, 2.7e0, -2e0, -2.1e0, -4e0). listitem 1922 =>(
0.9e0, -1.7e0, -6.2e0, -3.7e0, -1.6e0, 2.9e0, 4.8e0, 6.3€e0, 2.7€e0,
-0.2e0, -3.8e0, -2.6e0). list.item ,..))




So far...

grammar StationDataParser  {

}

token TOP A=
token keyval

keyval >+ <observations> $ }
{ $<key>=[< -[=]>+] = \h*$< val >=[\ N+] \n}
token observations {' Obs' \h* \ n<observation>+ }
token observation { $<year>=] \d+] \h*<temp>+ %% ][ \h*] \n }
token temp { -2 \d+ \. \d+ }

class StationData {

}

has $.name;
has $.country;
has @.data;

submethod BUILD(:%info (:Name($!name), :Country($!country), *%), :@!data) {
}

class StationDataActions {

method TOP($/) {
make StationData.new (
info => $< keyval >.map(*. ast).hash,
data => $<observations>. ast

i
}
method keyval ($/) {
make ~$<key> => ~$< val >;

}
method observations($/) {
make $<observation>.map(*. ast). grep (*. value.none <= -99);
method observation($/) {
make +$<year> => $<temp>.map(*. Nuny
}
}
say StationDataParser.parsefile ('data/01/010010', :actions( StationDataActions

)). ast;

36 lines of
code (including
whitespace)

A nice parser

A basic model
class

Action
methods to
perform a

mapping



Yearly means

We'd like to produce a graph of the mean temperature
each year for a station

We create a method that will calculate them...

class StationData {

method year means() {

}

}




Yearly means

We'd like to produce a graph of the mean temperature
each year for a station

...define inside it a (lexical) mean sub...

class StationData {

method year_means() {
sub mean(@values) {
[+](@values) / @values

}




Yearly means

We'd like to produce a graph of the mean temperature
each year for a station

...and map each data pair to a pair of year and mean.

class StationData {

method year means() {
sub mean(@values) {
[+](@values) / @values
}
@Udata.map (-> $year pair {
$year pair.key =>mean $year_pair.value

D;




What's the plot for graphs?

| really don't want to write my own grapiplotter



What's the plot for graphs?

| really don't want to write my own graph plotter

modules.perl6.orgo the rescue!

SSL Perlf interface to OpenSSL C?) |
String::CRC32 Sriwrenéjquzuﬁﬁegfaacirsiﬁéﬂ calculate a CRC32 C?) o
Sum Z_Iegigr:::rnﬁgles for computing hashes and C?) -
SVG ﬁi?;lrmi{ﬂ generate SVG (Scalable C?) |

@:Plat Srssgtg;gﬂggigﬂtplomng library that 5 |
Tardis Time traveling debugger in Perl 6 (?) |
Task::Star Meta-package for modules included in Rakudo

Star



Producing a graph

Use the SVG and SVG::Plot modules:

use SVG;
use SVG::Plot;

Then use It to produce a graph of the yearly means:

my $station =  StationDataParser.parsefile (‘data/01/010010;,
-actions( StationDataActions )). ast;
my @means = $tation.year_means

spurt" means.svg"”, SVG.serialize (SVG:: Plot.new (

width => 600,
height => 350,
X =@ means.mad*.key),

values => [[@ means.mag*.value)]],
titte => $station.name

).plot(:  xy-lines));




The first temperature graph

Here Is the result:

Jan Maven

1920 1925 1950 1935 1940 1945 1050 1933 1960 1963 1970 1975 1980 1935 1990 1995 2000 2003




Statistics by country

It would be interesting to look at yearly means of an
entire country

This can be computed by finding the mean of the mean
temperatures for all stations in the country

We can start by defining &ountryDataclass:

class CountryData {
has $.name;
has @.stations;

submethod BUILD(:$'name, :@!stations) { }
}




Many stations, categorized by country

We now start to read In all of the station files in a
directory, getting aStationDatafor each one

my @stations = do for dir (‘'data/01") - > $file {
StationDataParser.parsefile ($file,
-actions( StationDataActions )). ast;

These can then be categorized by country, and a
CountryDataconstructed for each one

my @countries =do for @  stations.categorize (*.country) {
CountryData.new (name => .key, stations => .value)

}




Duplicate the yearly means code?

Calculating the yearly means over a bunch of stations w
clearly be a bit different than doing it for one

We could implement it separately in bot®tationData
and CountryData..but once we start calculating other
things, it will be a lot of duplicatiorL

Insight:
Handling data for just one station is a special case of
handling data for many stations

This will allow us to factor out the yearly means code



StationDatagprovides one data set

TheStationDataclass is updated with a datasets method.
which packages its single set of data up in an array

class StationData {
has $.name;
has $.country;
has @.data;

submethod BUILD(
:%info (:Name($'name), :Country($!country), *%),

‘@'data) { }

method datasets() { [@.data] }




CountryDatgrovides many data sets

Meanwhile, CountryDatamaps the datasetsout of each
of the stations, caching this work in an attribute

class CountryData {
has $.name;
has @.stations;
has @.datasets;

submethod BUILD(:$!'name, :@!stations) {
@!datasets = @! stations.map (*. data.item );

}

}

The attribute gets a publiaccessarmeaning that there Is
also a datasets method available



Where to putyear mearts

In a common base class, maybe?



Where to putyear mear¥s

In a common base class, maybe?

NO.

Inheritance iIs a mechanism for specialization and
extension, and classes are about responsibility

Perl 6 provides us witholesfor code reuse



Yearly statistics calculations go in a role

The code foyear _meands moved into a role, and
updated to work over many datasets

role YearlyStatistics {
method year means() {
sub mean(@values) {
[+](@values) /| @values
}
my %station_means ;
for self.datasets -> @year_pairs {
for @ year pairs {
my ($year, $temps) = .key, .value;
push %station_means {$year}, mean $temps;
}
}

Ostation_means.sort  (*.key).map({ $ .key => mean $ .value })




Doing the role

Roles are incorporated into classes using does

class StationData does YearlyStatistics {

}

class CountryData does YearlyStatistics {

}

This performs flattening composition, meaning any
methods in the role are "copied" into the class

If you compose two roles that try to bring in a method of
the same name, it is a compHgme error



The graph

Here 1t IS!

NOERWAY

1300 1850 1900 1930 2000




The graph

Apparently, Norway has been cooling massively!

NOERWAY




Lies, dammed lies, and data

We don't have data from every year for every station.
The two big transition points in the graph are In years
where we gain data from new stations.

Norway Is a huge country north to south, especially onct
you factor in the islands in the Arctic!

> 80 North

<60° North




