w‘r—“i'. i — - — 2 — L\.\ = =
= / B . e e tit!.(ﬂ{«ﬂl'vlnrz
. ‘-_ l'..“E..l..._'.-!.!!ll—._.!.

ju..lllllllilll!ll!ll!!l!lll!m

Lead developer of
RakudoPerl 6

Founder and architect
of MoarVVM

Work as a software
architect and teacher

Live Iin beautiful Prague

My 3 topics for today:
Parallelism
Asynchrony

Concurrency

There's plenty of
confusion around them.

They're different. You employ

them - or encounter them- In

different situations. And they
heed different solutions.

These topics have a
history of pain.

Threads(and data races)
Locks(and deadlocks)

Condition variables
(and spurious wakeups)

We've basicallyhadthe structured

programming revolution.
(You get onggoto a month!)

We're not doing so well at

achieving the same with data.
(But high scale Is proving a good teacher.)

But we're making progress on
structuring parallelism,
concurrency, and asynchrony.

I'm going to take you
through some of these
structured approaches.

And, since |'ve been working on
Perl 6 implementations of them,
I'll use that for my examples.

|_et's start with
parallelism

Most modern CPUs have

le cores

P

mult

For years, wencreased CPU clock

speeds by decreasing, feature sjze

bringing components closer so we
could compute things faster

Feature sizes over time (nm)
12000

10000 —3
8000

6000

4000
2000 =

1971
1973
1975
1977
1979
1981
1983
1985
1987
1989
1991
1993
1995
1997
1999
2001
2003
2005
2007
2009
2011
2013
2015
2017
2019

But then...
PNYSICS
nappeneac

4/
&4
Speed of light; the

fastest we can
move information

~
3.0x 18 m/s

3.0x 10 Hz

/

Number of cycles a
3GHz CPU does per

second
B

A

)

How far we can -
= 10 cm<— move information
per cycle

We're already
down to making
transistors outof
just 10s of atoms

The solution:
do multiple

things at.the
same time

Parallelismis about
choosing to do multiple
things at onceg In hope

of reaching a solution
IN less (allclock) time.

Parallelism

choos@tego multiple

Here's a simple JSON
comparison program.

use JSON::Tiny;

sub MAIN($filel, $file2) {
my $parsedl = from - json (slurp($filel));
my $parsed2 = from -json (slurp($ file2));
say $parsedl eqv $parsed?2
?7? 'Files contain identical JSON'
Il 'Files contain different JSON';

There aretwo tasks
with no dependencies
between them.

use JSON::Tiny;

sub MAIN($filel, $file2) {
my $parsedl = from - json (slurp($filel))
my $parsed2 =
say $parsedl eqv $parsed2
?7? 'Files contain identical JISON'
Il 'Files contain different JSON';

Let's do
them In
parallel!

But...

How to pick the best number of
tasks to work on at a time?

Howto walit correctly and
efficiently for completion, and
correctly getthe results?

How do we correctly handle
exceptions In parallel work?

UsePromises

use JSON::Tiny;

sub MAIN($filel, $file2) {
my $parsingl = start from - json (slurp($filel));
my $parsing2 = start from - json (slurp($ file2));
my ($parsedl, $parsed?2) = await $parsingl, $parsing2;
say $parsedl eqv $parsed2
?? 'Files contain identical JSON'
Il 'Files contain different JISON';

UsePromises

use JSON::Tiny;

sub MAIN($filel, $file2)
my $parsingl = start from - json (slurp($filel));
my $parsing2 = start from - json (slurp($ file2));

my ($parsedl, $parsell2) = await $parsingl, $parsing2;
say $parsedl eqv $parsed2

?7? 'Files contain igentical JSON'

Il 'Files contain different JSON';

\

Schedule work on the thread pool. It can
consider hardware, memory, etc. to
choose appropriate number of \werkers.

UsePromises

use JSON::Tiny;

sub MAIN($filel, $file2) {
my $parsingl = start from - json (slurp($filel));
my $parsing2 = start from - json (slurp($ file2));
my ($parsedl, $parsed?2) = await $pargingl, $parsing2;
say $parsedl eqv $parsed2
?7? 'Files contain identical JZON'
Il 'Files contain different J50N";

/

Canawait any number,efPromise s; it
waits efficiently (OS kernel aware) and
unpacks the results for you

UsePromises

use JSON::Tiny;

sub MAIN($filel, $file2)
my $parsingl = start from - json (slurp($filel));
my $parsing2 = start from - json (slurp($ file2));

my ($parsedl, $parsell2) = await $pargingl, $parsing2;
say $parsedl eqv $parsed2

?7? 'Files contain igentical JZON'

Il 'Files contain difierent J50N";

V

Any exceptions thrown,by thetart ed
code are captured, and then automatically
re-thrown on the await ing thread.

This istask parallelism
We find independent
tasks, and work on
them In parallel.

Here's our next challenge.
parallelizing a program that
parses many data files from
weather stations, filters out

those In Europe, and then

finds the place with the
maximum temperature.

We'll build a pipeline of operations

(hint: In Perl 6, storing the result of
things likemapandgrep In aScalar
lets you talk about the pipeline
without evaluating it for results!)

sub MAIN($data -dir) {
my $filenames = dir ($data - dir);

my $data =% filenames.map (&slurp);
my $parsed = $data.map (&parse - climate - data);
my $european = $parsed.grep (*.continent eq 'Europe’);

my $max =$ european.max (by => *.average -temp);
say "$ max.place () is the hottest!";

}

Some utility subs omitted here...

With this approach, welon't
build up a lot of state.In
memory. One file at a time Is
pulled through the pipeline.

map
&slurp

Y

map
&parse- climate - data

Y

grep
*.continent eq ' europe'

Here, we're seekinglata
parallelism We have
many data items and

want to do the same to
each of them- so we

partition the data.

We'd like torun the pipeline
on a bunch of threads
feeding them data and
collecting the resullts.

map
&slurp

v

map
&slurp

map
&parse- climate - data

Y

Y

map
&parse- climate - data

grep
*.continent eq ' europe'

\

grep
*.continent eq ' europe'

But...

How to distribute the work and
collect the results safely?

How to collect exceptions?

What If keeping results ordered
relative to input matters?

We userace to switch on parallel

processing of the pipeline!

sub MAIN($data - dir) {

}

Some utility subs omitted here...

my $filenames = dir ($data - dir)jrace(batch => 10);

my $data =% filenames.map (&slurp),

my $parsed = $data.map (&parse - climate - data);

my $european = $ parsed.grep (*.contingnt eq 'Europe’);
my $max =% european.max (by =¥ *.average -temp);

say "$ max.place () is the hottest!";

/
Calling..race() coerces the pipeline into a parallel

one. Once we reach thenaxcall, multiple threads

will be spawned, processing the pipelineson
batches of 10 items at a time.

race(batch => 32, degree => 4)

Run the pipeline in parallel, work in batches

of 32 values at a time, and create 4 parallel

workers. Produce results in whatever order
they become available.

nyper(batch => 64, degree => 2)

Run the pipeline in parallel, work in batches

of 64 values at a time, and create 2 parallel

workers. Make sure the results produced are
relative to the order of the inputs.

race()

Run the pipeline in parallel, work out the best
batch size and number of workers for me.
Produce results in whatever order they
become available.

hyper()

Run the pipeline in parallehork out the best
batch size and number of workers for me
Make sure the results produced are relative
to the order of the inputs.

All aboutreacting to
things that will happen
In the future.

Exactlywhenthey
happen isnot under
our direct control

Examples

Spawned processes completing
Responses to web requests arriving
Incoming connections to a server
User interaction with-a GUI

Signals

In SOome cases, we can start
an operation that will
complete In the future; and
blockuntil 1t does.

But sometimes this doesn't
meet our needs or won't
scale far enough.

Example:iscp all the things

We have a bunch of files we need to
securely copy to many servers

We canrun the scp program in a loop
to upload them one ata time:

for @uploads - > $file -info {
run(* scp’, $file -info.local , $file -info.target);

}

But how might we do 4 at a time?

UsingProc :;; Async

First, let's adapt our code to use
Proc:Asyncinstead (bullt in'to Perl 6):

for @uploads - > $file - info {
my $proc = Proc:: Async.new(' scp’,
$file -info.local , $file -info.target);
await $ proc.start

}

It's await again! We get @romise
back from$prog.start.

Do them all:at once!

To get a step closer, we can_now push
eachPromise onto an array, and then
await. all of them:

my @working;
for @uploads - > $file - info {
my $proc = Proc:: Async.new(' scp’
$file -info.local , $file -info.target);
push @working, $ proc.start
}

await @working;

Of course, this hammers the network!

Maximum 4 at a time

If @working grows to 4, we wait for any
Promise to be kept, andgrep on unkept:

my @working;
for @uploads - > $file - info {
my $proc = Proc:: Async.new(' scp’,
$file -info.local , $file -info.target);
push @working, $ proc.start

If @working == 4 {
await Promise.anyof (@working);
@working .= grep{ '$_ D;
}
}

await @working;

Simple asynchronous
operations are started,
and produce one result.
But some asynchronous

data sources produce
many values over time.

Asynchronous data streams
File change notifications
Incoming requests to a server

Incoming packets of data to a
socket

GUI events

Supplies

In Perl 6, an asynchronous stream
of values Is called &upply

nHare I I
Supply

Finite SUppY g e iS—

(success)

Automated test runner

We'll use a file change notification
Supply to trigger automated
running of a test suite

We want to watch a test directory,

and optionally a number of source

directories- and should only do one
test run at a time

File changes

ThelO::Notification built-in provides
a way to watch for changes

Thewatch- path method returns a
Supply , which we cartap

my $changes = 10 :: Notification.watch - path($test - dir);
$changes.tap ({
say "It changed!";

D;

Supply Is the dual oBeq

Earlier, we set up a pipeline of operations
for querying climate data. When we asked
for the hottest place maxpulled values
through the pipeline to work it out.

A Supply Is also a pipeline, but values are
Insteadpushedthrough it as they are
produced at their (asynchronous) source.

Famillar methods, buasync

This means we can use things lirmpand
grep to project and filter data that arrives
asynchronously. For example, we can filter
by file extension:
my $changes = 10 :: Notification.watch - path ($ src - dir);
my $code =$ changes.grep (*.path ~~ /<.pm .p6> $/);

$code.tap ({
say "A source file changed!";

D;

b AOSS> 0dzu X

Most people don't solve all of their list
related problems usingnap grep , and
other higher order friends

Some problems are more easily expressec
usingfor loops,if statements, etc.

But afor loop iIs a blocking, synchronous
thing. What about asynchronous data?

whenever

Perl 6 has an asynchronous looping
construct calledwhenever

The body runs whenever a value arrives:

whenever 10:: Notification.watch - path($test - dir) {
maybe run - tests(‘Tests changed’);

}

Being a loop, you can even use LAST to
decide how to handle end of sequence!

react /supply

A whenever can live in aupply block
(which can emit values) or eeact block
(works like entering an event loop):

my $code = supply {

whenever 10 :: Notification.watch - path($ src -dir) {
emit .path if . path ~~ /<.pm .p6> $/;
}
}
react {

whenever $ code -> $path {
say "Code file $path changed "

}
}

Back to our test runner

On changes to the specified test and
source directories, maybe run the tests:

sub MAIN($test -dir , *@source -dirs) {
react {
whenever 10:: Notification.watch - path($test - dir) {
maybe run - tests('Tests changed');
}
for @source -dirs ->3$dir {
whenever 10:: Notification.watch - path($ dir) {
maybe run - tests('Source changed);
}
}
}
}

Deciding whether to run

The notifications may arrive on different
threads- but only one thread may be in a
supply /react at once- so this is safe:

sub maybe- run - tests($reason) {
state $running - tests = False;
unless $running -tests {
say "Running tests ($reason)"
$running - tests = True
whenever run - tests() {
print" \n\n"
$running - tests = False;
}
}

Actually doing the running

It's our old friend,Proc:: Async again.
We output STDOUT Indented and discard
STDERR. We returnPaomise ; whenever

can work fine against those too.

sub run -tests() {
my $runner = Proc:: Async.new('prove ...");

whenever $ runner.stdout - > $output {
print$ output.indent (2);

}

whenever $ runner.stderr { } # Discard

return $ runner.start

Perl 6 keeps asynchrony
explicit. It provides
structured language
support, to avoid a

tangle of callbacks and
guide programmers

towards thread safety.

Finally:
concurrericy

Concurrency Is about
competition to access
and mutatesome
shared resource.

Passengers checking in for a flight
at the same time must not be
able to choose the same seat!

