
How does
deoptimization help

us go faster?

And other questions you were
sensible enough not to ask!

Jonathan Worthington |

Jonathan Worthington |

An exploration of why
making Perl 6 fast is hard,

and some of the techniques
and computer science we're

throwing at the problem

The
Challenge

Let's write
Perl 6 in
Perl 6!

Let's write
Perl 6 in
Perl 6!

Let's write
Perl 6 in
Perl 6!

Indexing an array (@a[$x])

Indexing an array (@a[$x])

A multiple dispatch to the sub
postcircumfix:<[]> (with candidates for one

index, slicing, code (e.g. @a[*-1])...

Indexing an array (@a[$x])

A multiple dispatch to the sub
postcircumfix:<[]> (with candidates for one

index, slicing, code (e.g. @a[*-1])...

...which does a method call @a.AT-POS...

Indexing an array (@a[$x])

A multiple dispatch to the sub
postcircumfix:<[]> (with candidates for one

index, slicing, code (e.g. @a[*-1])...

...which does a method call @a.AT-POS...

...which gets the element and returns it if it
already exists, or sets up a Scalar with an

auto-vivification callback if not

Loop over the lines in a file

Loop over the lines in a file

Get an iterator and call .pull-one on it...

Loop over the lines in a file

Get an iterator and call .pull-one on it...

...which calls .consume-line-chars on the
decoder (pluggable userspace encodings)

and, if it fails, get bytes to refill the buffer...

Loop over the lines in a file

Get an iterator and call .pull-one on it...

...which calls .consume-line-chars on the
decoder (pluggable userspace encodings!)

and, if it fails, get bytes to refill the buffer...

...and then call the block of the loop, passing
the line as an argument to it

All these darn calls

In a language where...

Method resolution is pluggable
Type checking is pluggable

We have continuation-powerful constructs
Stack frames are first class

A mixin can change an object's type
Frames can have exit handlers (LEAVE etc.)

Rakudo Perl 6
Compiler

Architecture

Perl 6 Source

Perl 6 Source

Bytecode (for MoarVM, JVM, etc.)

Perl 6 Source

Bytecode (for MoarVM, JVM, etc.)

C
o

m
p

ile
r

(w
ri

tt
e

n
 in

 N
Q

P
)

Perl 6 Source

Grammar + Actions

Bytecode (for MoarVM, JVM, etc.)

C
o

m
p

ile
r

(w
ri

tt
e

n
 in

 N
Q

P
)

Perl 6 Source

Grammar + Actions

AST

(Abstract Syntax Tree)

Bytecode (for MoarVM, JVM, etc.)

C
o

m
p

ile
r

(w
ri

tt
e

n
 in

 N
Q

P
)

Perl 6 Source

Grammar + Actions

Code Generation

AST

(Abstract Syntax Tree)

Bytecode (for MoarVM, JVM, etc.)

C
o

m
p

ile
r

(w
ri

tt
e

n
 in

 N
Q

P
)

Compiler is a Perl 6 program, running on the
same VM instance (and thus in the same

process) as the program it compiles

Scripts/one-liners: bytecode in memory

Modules: cache bytecode on disk (sounds
easy; actually hard to have it Just Work)

EVAL - just a call into the compiler (also

means bytecode has to be possible to GC)

Program
Optimization

Grammar + Actions

Code Generation

AST

(Abstract Syntax Tree)

C
o

m
p

ile
r

(w
ri

tt
e

n
 in

 N
Q

P
)

Actually, this wasn't the whole truth...



 

Grammar + Actions

Code Generation

AST

(Abstract Syntax Tree)

C
o

m
p

ile
r

(w
ri

tt
e

n
 in

 N
Q

P
)

AST optimizer

Optimized AST

(Abstract Syntax Tree)

AST optimizer

Constant folding (calls to is PURE subs)

(Some) lexical to local lowering, plus
flattening scopes where it won't matter

Inlining of native int/num/str operators

Assorted rewrites to constructs into cheaper

equivalents that do the same

It has been said:

"Don't put off until runtime
that which you could do at

compile time"

But:

For scripts and one-liners, the
language user doesn't

experience compile time and
runtime, just time

And also:

When we compile a module,
we know little about its usage
patterns; they may vary wildly
between different programs

How many compile times?

We aren't limited to just one

Just In Time compilers give us
another round of compilation

So, I'd argue:

Only do in this compile time
something that a later

compile time couldn't do
better and/or more simply

Known
Unknowns

sub average-line-chars($handle) is export {
 my $total-chars = 0;
 my $total-lines = 0;
 for $handle.lines -> $line {
 $total-chars += $line.chars;
 $total-lines++;
 }
 return $total-chars / $total-lines;
}

Even this simple module is
packed with unknowns…

sub average-line-chars($handle) is export {
 my $total-chars = 0;
 my $total-lines = 0;
 for $handle.lines -> $line {
 $total-chars += $line.chars;
 $total-lines++;
 }
 return $total-chars / $total-lines;
}

We don’t know the types of
the parameters

sub average-line-chars($handle) is export {
 my $total-chars = 0;
 my $total-lines = 0;
 for $handle.lines -> $line {
 $total-chars += $line.chars;
 $total-lines++;
 }
 return $total-chars / $total-lines;
}

We don’t know the types of
method invocants

sub average-line-chars($handle) is export {
 my $total-chars = 0;
 my $total-lines = 0;
 for $handle.lines -> $line {
 $total-chars += $line.chars;
 $total-lines++;
 }
 return $total-chars / $total-lines;
}

We don’t know the types of
arguments to operators

Even if we had type
annotations, we could be

passed a subtype (except for
native types)

Anything we pass as an

argument may get mixed into

If we get passed a closure, we
don't know what code is

going to be invoked

In a given use of a module, it
might turn out to be the same

every time

sub average-line-chars($handle) is export {
 my $total-chars = 0;
 my $total-lines = 0;
 for $handle.lines -> $line {
 $total-chars += $line.chars;
 $total-lines++;
 }
 return $total-chars / $total-lines;
}

We don't know if this loop
will be hot or not

In summary…

We don't know what to spend
effort optimizing

We don’t know what cases to

optimize it for

Dynamic
problem?
Dynamic
solution!

Interpreter logging

Initially, run bytecode using
an interpreter

Have various instructions log
encountered types, code, etc.

Can logging be cheap enough?

Append 24-byte entries into a
buffer until it is full

Entries carry a call frame ID to

allow stack reconstruction

Optimization thread

Receives filled buffers

Log
(T1)

Log
(T2)

Log
(T2)

Log
(T1)

Threads place full log buffers
into a concurrent queue

Optimization worker thread
removes them one at a time

Aggregation

Replay the recorded events on
a simulated call stack

Gradually build up statistics

about types, callees, etc.

Example program

my $fh = open "longfile";
my $chars = 0;
for $fh.lines {
 $chars = $chars + .chars
}
$fh.close;
say $chars

Example program

my $fh = open "longfile";
my $chars = 0;
for $fh.lines {
 $chars = $chars + .chars
}
$fh.close;
say $chars

method pull-one() {
 # Slow path falls back to .get on the
 # handle, which will replenish the buffer.
 $!decoder.consume-line-chars(:$!chomp) //
 ($!handle.get // IterationEnd)
}

Calls pull-one
on iterator to
get each line

Statistics for chars method

Latest statistics for 'chars' (cuid: 4208, file:
SETTING::src/core/Str.pm:2728)

Total hits: 468

Callsite 0x7f0b7089da60 (1 args, 1 pos)
Positional flags: obj

 Callsite hits: 468

 Maximum stack depth: 13

 Type tuple 0
 Type 0: Str (Conc)
 Hits: 468
 Maximum stack depth: 13

Statistics for infix:<+>
Latest statistics for 'infix:<+>' (cuid: 3129, file:
SETTING::src/core/Int.pm:245)

Total hits: 469

Callsite 0x7f0b7089da40 (2 args, 2 pos)
Positional flags: obj, obj

 Callsite hits: 469

 Maximum stack depth: 35

 Type tuple 0
 Type 0: RW Scalar (Conc) of Int (Conc)
 Type 1: Int (Conc)
 Hits: 469
 Maximum stack depth: 35

Statistics for read-internal
Latest statistics for 'read-internal' (cuid: 9529, file:
SETTING::src/core/IO/Handle.pm:220)

Total hits: 1

Callsite 0x7f0b7089da40 (2 args, 2 pos)
Positional flags: obj, obj

 Callsite hits: 1

 Maximum stack depth: 16

 Type tuple 0
 Type 0: IO::Handle (Conc)
 Type 1: Int (Conc)
 Hits: 1
 Maximum stack depth: 16

Not hot, won't optimize (yet)

Statistics for defined (1)
Latest statistics for 'defined' (cuid: 356, file:
SETTING::src/core/Mu.pm:106)

Total hits: 475

Callsite 0x7f0b7089da60 (1 args, 1 pos)
Positional flags: obj

 Callsite hits: 475

 Maximum stack depth: 32

 Type tuple 0
 Type 0: Scalar (Conc) of Any (TypeObj)
 Hits: 1
 Maximum stack depth: 26
…

Hot, but…

Not on a Scalar holding Any…

Statistics for defined (2)

…
 Type tuple 4
 Type 0: Str (TypeObj)
 Hits: 2
 Maximum stack depth: 14

 Type tuple 5
 Type 0: Int (Conc)
 Hits: 1
 Maximum stack depth: 32

 Type tuple 6
 Type 0: Str (Conc)
 Hits: 468
 Maximum stack depth: 13

Nor on a Str type object…

Nor on an Int

But LOADS of calls on a Str!

Statistics for loop body (1)

Latest statistics for '' (cuid: 1, file: -e:3)

Total hits: 468

Callsite 0x7f0b7089da60 (1 args, 1 pos)
Positional flags: obj

 Callsite hits: 468

 Maximum stack depth: 12

 Type tuple 0
 Type 0: Str (Conc)
 Hits: 468
 Maximum stack depth: 12
…

Always given a Str

Statistics for loop body (2)
 Logged at offset:
 68:
 468 x type Scalar (Conc)
 76:
 468 x type Str (Conc)
 110:
 468 x type Int (Conc)
 468 x static frame 'chars' (4208)
 468 x type tuple:
 Type 0: Str (Conc)
 144:
 468 x type Int (Conc)
 468 x static frame 'infix:<+>' (3129)
 468 x type tuple:
 Type 0: RW Scalar (Conc) of Int (Conc)
 Type 1: Int (Conc)

Always same
chars method,
always
Str  Int

Planning

The statistics are used to plan
what code to optimize, and
what cases to optimize it for

Planning: what's hot?

The total number of calls to a
given block or routine

provides an indication of
whether to consider it

further; it's weighed up
against bytecode size

*morphic

We can classify a callsite, or
the overall use of a routine, as
monomorphic, polymorphic,

and megamorphic

Monomorphic

Only a single type (or tuple of
types) is observed (or the

outliers are so few we might
as well consider it so)

Polymorphic

A few different types (or
tuples of types) are observed

(again, we're willing to
overlook the odd outlier)

Megamorphic

Many different types show up
without any being notably

more common

Plan for infix:<+>
Observed type specialization of 'infix:<+>' (cuid: 3129,
file: SETTING::src/core/Int.pm:245)

The specialization is for the callsite:
Callsite 0x7f0b7089da40 (2 args, 2 pos)
Positional flags: obj, obj

It was planned for the type tuple:
 Type 0: RW Scalar (Conc) of Int (Conc)
 Type 1: Int (Conc)
Which received 469 hits (100% of the 469 callsite hits).

The maximum stack depth is 35. Totally monomorphic

Plan for method Mu.defined
Observed type specialization of 'defined' (cuid: 356,
file: SETTING::src/core/Mu.pm:106)

The specialization is for the callsite:
Callsite 0x7f0b7089da60 (1 args, 1 pos)
Positional flags: obj

It was planned for the type tuple:
 Type 0: Str (Conc)
Which received 468 hits (98% of the 475 callsite hits).

The maximum stack depth is 13. Monomorphic-ish

Monomorphic/polymorphic

Can generate versions of the
code specialized by input type

Will be one or just a few of

them; worth the work/RAM

Megamorphic

Not worth producing type
specializations

But can still do some other

optimizations

In the future…

We'll analyze when a
megamorphic sub/method is

monomorphic/polymorphic in
some arguments (this shows

up in array/hash assignments)

Specialization
Graph

So, we've decided what we're
going to optimize and,

typically, what types we'll
produce specializations for

What next?

We need to turn the bytecode
into a form that's ideal for

analysis and transformation

Basic blocks

Sequences of instructions that
do not involve flow control

(such as a branch or an
exception throw) or

invocation (calling things)

Basic blocks and Perl 6

A lot of operations are what
we've called invokish - they
may lead to a function call

(For example, decont of a Scalar
won't, but of a Proxy will)

checkarity liti16(1), liti16(1)
param_rp_o r1, liti16(0)
decont r8, r1

wval r9, liti16(1), liti16(35) (P6opaque: Str)
istype r10, r8, r9

assertparamcheck r10

decont r9, r1

set r0, r9
param_sn r2
takedispatcher r3
wval r4, liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5, r0, r4, lits($!value), liti16(0)
chars r6, r5
p6box_i r4, r6
wval r7, liti16(1), liti16(37) (P6opaque: Int)
…

checkarity liti16(1), liti16(1)
param_rp_o r1, liti16(0)
decont r8, r1

wval r9, liti16(1), liti16(35) (P6opaque: Str)
istype r10, r8, r9

assertparamcheck r10

decont r9, r1

set r0, r9
param_sn r2
takedispatcher r3
wval r4, liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5, r0, r4, lits($!value), liti16(0)
chars r6, r5
p6box_i r4, r6
wval r7, liti16(1), liti16(37) (P6opaque: Int)
…

May invoke (Proxy?)

checkarity liti16(1), liti16(1)
param_rp_o r1, liti16(0)
decont r8, r1

wval r9, liti16(1), liti16(35) (P6opaque: Str)
istype r10, r8, r9

assertparamcheck r10

decont r9, r1

set r0, r9
param_sn r2
takedispatcher r3
wval r4, liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5, r0, r4, lits($!value), liti16(0)
chars r6, r5
p6box_i r4, r6
wval r7, liti16(1), liti16(37) (P6opaque: Int)
…

May invoke (Proxy?)

May invoke (subset?)

checkarity liti16(1), liti16(1)
param_rp_o r1, liti16(0)
decont r8, r1

wval r9, liti16(1), liti16(35) (P6opaque: Str)
istype r10, r8, r9

assertparamcheck r10

decont r9, r1

set r0, r9
param_sn r2
takedispatcher r3
wval r4, liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5, r0, r4, lits($!value), liti16(0)
chars r6, r5
p6box_i r4, r6
wval r7, liti16(1), liti16(37) (P6opaque: Int)
…

May invoke (Proxy?)

May invoke (subset?)

May call error generator

checkarity liti16(1), liti16(1)
param_rp_o r1, liti16(0)
decont r8, r1

wval r9, liti16(1), liti16(35) (P6opaque: Str)
istype r10, r8, r9

assertparamcheck r10

decont r9, r1

set r0, r9
param_sn r2
takedispatcher r3
wval r4, liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5, r0, r4, lits($!value), liti16(0)
chars r6, r5
p6box_i r4, r6
wval r7, liti16(1), liti16(37) (P6opaque: Int)
…

May invoke (Proxy?)

May invoke (subset?)

May call error generator

May invoke (Proxy?)

Control Flow Graph

Basic blocks are nodes

Put an edge when control
may flow from one basic

block to another

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Conditional

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Loop Conditional

Successors and predecessors

The successors of a basic
block are those we may go to

The predecessors of a basic

block are those we may come
from

Control exceptions

All basic blocks in the region
covered by a control

exception (next, last, etc.)
are given the basic block of
the handler as a successor

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

redo handler

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

redo handler
last handler

Non-control exceptions

For now, their handlers are all
linked from an empty "entry

point" basic block

This is imprecise, but safe;
we'll see why shortly…

Dominance

Basic block A dominates basic
block B if every possible path

through the CFG from the
entry to B goes through A

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Dominates

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Dominates

BB1 BB1, BB2, BB3,
BB4, BB5, BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Dominates

BB1 BB1, BB2, BB3,
BB4, BB5, BB6

BB2 BB2, BB3, BB4,
BB5, BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Dominates

BB1 BB1, BB2, BB3,
BB4, BB5, BB6

BB2 BB2, BB3, BB4,
BB5, BB6

BB3 BB3

BB4 BB4

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Dominates

BB1 BB1, BB2, BB3,
BB4, BB5, BB6

BB2 BB2, BB3, BB4,
BB5, BB6

BB3 BB3

BB4 BB4

BB5 BB5, BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Dominates

BB1 BB1, BB2, BB3,
BB4, BB5, BB6

BB2 BB2, BB3, BB4,
BB5, BB6

BB3 BB3

BB4 BB4

BB5 BB5, BB6

BB6 BB6

Strict dominance

Just means excluding block's
dominance of themselves

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Strictly
Dominates

BB1 BB2, BB3, BB4,
BB5, BB6

BB2 BB3, BB4, BB5,
BB6

BB3

BB4

BB5 BB6

BB6

Immediate dominance

Basic block A immediately
dominates Basic Block B if it

strictly dominates it, but does
not strictly dominate another
BB that strictly dominates it

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Strictly
Dominates

BB1 BB2, BB3, BB4,
BB5, BB6

BB2 BB3, BB4, BB5,
BB6

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Strictly
Dominates

BB1 BB2, BB3, BB4,
BB5, BB6

BB2 BB3, BB4, BB5,
BB6

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Strictly
Dominates

BB1 BB2, BB3, BB4,
BB5, BB6

BB2 BB3, BB4, BB5,
BB6

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

Dominance tree

The immediate dominator of
each basic block is unique

Thus they form a tree, aka the

dominance tree

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4 BB 5

BB 6

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

Dominance children

Successor and predecessor
are refer to the CFG

Parent and children refer to

the dominance tree

Why bother?

The dominance tree is a good
order to visit basic blocks to
propagate type information

But there's another reason…

Static Single Assignment

Form where each variable
only has one (textual)

assignment in the program

Can form it by renaming

param_rp_i r0, liti16(0)
param_rp_i r1, liti16(1)
mul_i r0, r0, r0
add_i r0, r0, r1
return_i r0

SSA in linear code: easy

Bump version per assign

param_rp_i r0(1), liti16(0)
param_rp_i r1, liti16(1)
mul_i r0, r0, r0
add_i r0, r0, r1
return_i r0

SSA in linear code: easy

Bump version per assign

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0, r0, r0
add_i r0, r0, r1
return_i r0

SSA in linear code: easy

Bump version per assign

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0, r0, r1
return_i r0

SSA in linear code: easy

Bump version per assign

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0(3), r0(2), r1(1)
return_i r0

SSA in linear code: easy

Bump version per assign

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0(3), r0(2), r1(1)
return_i r0(3)

SSA in linear code: easy

Bump version per assign

gt_i r2, r1, r0
if r2 goto BB(3)

What about flow control?

set r0, r1

return_i r0

gt_i r2(1), r1(1), r0(1)
if r2(1) goto BB(3)

What about flow control?

set r0, r1

return_i r0

gt_i r2(1), r1(1), r0(1)
if r2(1) goto BB(3)

What about flow control?

set r0(2), r1(1)

return_i r0

gt_i r2(1), r1(1), r0(1)
if r2(1) goto BB(3)

What about flow control?

set r0(2), r1(1)

return_i r0(???)

PHI functions

At such "join points" in the
graph, we insert PHI functions

These "merge" the incoming

values

gt_i r2(1), r1(1), r0(1)
if r2(1) goto BB(3)

What about flow control?

set r0(2), r1(1)

PHI r0(3), r0(1), r0(2)
return_i r0(3)

Placing PHIs

Placing PHI functions is also
driven by dominance (of note,

dominance frontiers - the
places that a basic block's

strict dominance ends)

Why SSA?

Associate facts with each SSA
variable (known type, known
concrete, known value), and
then can easily look them up

and rely on them

And at PHI functions?

Merge what we know

But how to do it safely?

Use a lattice for each fact type

Known type lattice

Easy rule: only move up

⊥

Unknown (⊤)

Int Str Product …

Known type lattice

join(Int, Int)  Int

⊥

Unknown (⊤)

Int Str Product …

Known type lattice

join(Int, Str)  ⊤

⊥

Unknown (⊤)

Int Str Product …

Known type lattice

join(Int, ⊤)  ⊤

⊥

Unknown (⊤)

Int Str Product …

Where do facts come from?

Sometimes we refer to a static
value (constants, types)

Others come from the

statistics

But…

The statistics only mean we
tend to have a certain type or

code object; they aren't a
proof that we always will!

Enter guards

Thus, we insert guard
instructions, which quickly

check that the actual type etc.
encountered is the one the
statistics suggest is typical

Deoptimization
enables

speculation

When a guard fails…

This is when we are forced to
perform deoptimization

Fall back to the interpreted

code that can handle all cases

Consequence

Must make sure that we
preserve enough data so that

we can fall back to the
interpreter and have it

continue

Example: dead code
elimination

Some dead writes can't

actually be removed, because
they'll be needed if we are

forced to deoptimize

But generally, we win

Guards are far cheaper than
the indirections they replace
(and they "hoist" the checks)

Deoptimizations are rare

What about mixins?

Mixins change the types of
objects "at a distance"

Force global deoptimization of

the whole call stack

Some
Optimizations

With a bunch of facts, and
guards ensuring they are true,

we can now proceed to
transform the graph

Resolving method calls

Knowing the exact type lets us
resolve method calls directly

Saves a hash lookup in the

method cache

Avoiding multi-dispatch

Use the type facts to
determine which multi

candidate would be called,
thus avoiding the overhead of

the multi-dispatch cache

Specialization linking

Use argument types to
identify which specialization
of a callee should be used,

avoiding argument type
checks in the called code

Inlining

For small callees, replace the
call with the code in the

callee, avoiding the overhead
of creating and tearing down
the call frame and arg passing

Aside: uninlining

In order that we can inline,
we also have to be able to
undo it in deoptimization.
This is "uninlining". A bit
tricky, but we manage it.

Unchecked attribute accesses

Just read the memory location
holding an attribute, rather

than having to do a lookup by
name (also applies to the
value slot of a Scalar!)

Checks to constants

Type checks already answered
by the established facts can

be turned into constants.
Same with "is it a container",

"is it concrete", etc.

Constant conditional removal

These "new constants" may
resolve some conditionals,
allowing for removal of the

check and branch instructions

Let's see how the chars
method was before

optimization...

checkarity liti16(1), liti16(1)
param_rp_o r1(2), liti16(0)
hllize r8(2), r1(2)

set r1(3), r8(2)
decont r8(3), r1(3)

wval r9(2), liti16(1), liti16(35) (P6opaque: Str)
istype r10(1), r8(3), r9(2)

assertparamcheck r10(1)

decont r9(3), r1(3)

isconcrete r10(2), r9(3)
assertparamcheck r10(2)

decont r9(4), r1(3)

set r0(2), r9(4)
param_sn r2(2)
wval r4(2), liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5(1), r0(2), r4(2), lits($!value), liti16(0)
chars r6(1), r5(1)
p6box_i r4(3), r6(1)
wval r7(2), liti16(1), liti16(37) (P6opaque: Int)
decont r9(5), r4(3)

istype r6(2), r9(5), r7(2)

unless_i r6(2), BB(12)

isconcrete r10(3), r9(5)
if_i r10(3), BB(15)

wval r8(4), liti16(1), liti16(21) (P6opaque: Nil)
istype r6(3), r9(5), r8(4)

if_i r6(3), BB(15)

wval r8(5), liti16(4), liti16(8) (not deserialized)
prepargs callsite(0x7f0b7089da40, 2 arg, 2 pos, nonflattening, interned)
arg_o liti16(0), r4(3)
arg_o liti16(1), r7(2)
invoke_v r8(5)

return_o r4(3)

checkarity liti16(1), liti16(1)
param_rp_o r1(2), liti16(0)
hllize r8(2), r1(2)

set r1(3), r8(2)
decont r8(3), r1(3)

wval r9(2), liti16(1), liti16(35) (P6opaque: Str)
istype r10(1), r8(3), r9(2)

assertparamcheck r10(1)

decont r9(3), r1(3)

isconcrete r10(2), r9(3)
assertparamcheck r10(2)

decont r9(4), r1(3)

set r0(2), r9(4)
param_sn r2(2)
wval r4(2), liti16(1), liti16(35) (P6opaque: Str)
getattr_s r5(1), r0(2), r4(2), lits($!value), liti16(0)
chars r6(1), r5(1)
p6box_i r4(3), r6(1)
wval r7(2), liti16(1), liti16(37) (P6opaque: Int)
decont r9(5), r4(3)

istype r6(2), r9(5), r7(2)

unless_i r6(2), BB(12)

isconcrete r10(3), r9(5)
if_i r10(3), BB(15)

wval r8(4), liti16(1), liti16(21) (P6opaque: Nil)
istype r6(3), r9(5), r8(4)

if_i r6(3), BB(15)

wval r8(5), liti16(4), liti16(8) (not deserialized)
prepargs callsite(0x7f0b7089da40, 2 arg, 2 pos, nonflattening, interned)
arg_o liti16(0), r4(3)
arg_o liti16(1), r7(2)
invoke_v r8(5)

return_o r4(3)

Argument
handling,
type and
definedness
checks

The work

Return value
type check,
including
letting Nil
pass by

Now here's the chars
method after specialization

and optimizations…

sp_getarg_o r8(2), liti16(0)
set r1(3), r8(2)
set r9(3), r1(3)
const_i64_16 r10(2), liti16(1)
set r9(4), r1(3)
set r0(2), r9(4)
sp_p6oget_s r5(1), r0(2), liti16(8)
chars r6(1), r5(1)
p6box_i r4(3), r6(1)
wval r7(2), liti16(1), liti16(37)
set r9(5), r4(3)
return_o r4(3)

One basic block, so all the
possible invokish things have

been devirtualized

All type checks removed

And, yes, a bunch of (cheap)
set instructions that we'd like

to get rid of in the future
(mostly from overzealous

deopt safety)

Producing
Machine Code

No time for details, but as a
next step, we can then

compile this into x64 machine
code, eliminating the

overhead of interpretation

(See video of brrt's TPCiA talk)

Specialization
Entry (and
Reentry)

So, how do we transition from
slow-path interpreted code

into specialized code?

Entry on invoke

See if the callsite and
argument types match any

specialization ("guard tree")

Use that which matches

On Stack Replacement

At the end of a loop body,
check if there's an optimized

version of the loop code;
replace the running code "on

stack" with it if there is

Reentry

What if a hot loop deopts one
time in a hundred or so?

OSR can put us back into the
optimized version again later

Future
Plans

Box/unbox elimination, native
reference elimination

To avoid allocating temporary

box and reference objects,
thus saving work immediately
and causing less GC overhead

Escape analysis

Work out when an allocation
doesn't escape a call, and
replace it with a "stack"
allocation rather than a
"heap" (GC) allocation

More precise deopt handling

Current approach is safe, but
decidedly coarse; it can't

account for effects of guards
that were added, but in the

end weren't used

More aggression on inlines

We don't yet propagate facts
into the inlines; we could get
further improvements to the
code if we were able to do so

More tooling

Today, you can set the
MVM_SPESH_LOG=a_file
environment variable and
read the (giant) output; a
nicer tool would be good

That's all,
folks!

Questions?

