
 Cro

Jonathan Worthington
Edument

One Year Later

At last year's Swiss Perl Workshop...

At last year's Swiss Perl Workshop...

...I revealed Cro

A set of libraries and tools
for building distributed

systems in Perl 6

- Designed for Perl 6
- Async from the ground up

- Initial HTTP/WebSocket focus

So, where are we

one year later?

Well, we've got a logo now...

releases

commits
(across all Cro project repositories in the last year)

code contributors
(people who committed or had a merged PR)

sponsored features
(excluding Edument's sponsorship)

First usages in
production

(we don't know how many; users survey?)

So, what's new?

cro web

A web UI for stubbing Cro services,
automatically restarting them on
changes, viewing their logs, etc.

<demo>

Cro::HTTP::Test

A library for writing automated tests for
a HTTP service

Primarily for services built in Cro - but

can be used against any HTTP endpoint

use Cro::HTTP::Router;

sub routes() is export {
 route {
 get -> 'is-prime', Int $number {
 content 'application/json',
 { :$number, :prime($number.is-prime) }
 }
 }
}

use Routes;
use Cro::HTTP::Test;

test-service routes(), {
 test get('/is-prime/42'),
 json => { number => 42, prime => False }
 test get('/is-prime/71'),
 json => { number => 71, prime => True }
}

done-testing;

use Routes;
use Cro::HTTP::Test;

test-service routes(), {
 test-given '/is-prime/', {
 test get('42'),
 json => { number => 42, prime => False }
 test get('71'),
 json => { number => 71, prime => True }
 }
}

done-testing;

test post('/get-prime', json => { min => 1000, max => 2000 }),
 status => 200,
 json => { .<number>.is-prime }

post -> 'get-prime' {
 request-body -> (:$min!, :$max!) {
 content 'application/json', {
 number => ($min..$max).grep(*.is-prime).pick
 }
 }
}

test post('/get-prime', json => { min => 1000, max => 2000 }),
 status => 200,
 json => { .<number>.is-prime }
test post('/get-prime', json => { min => 20, max => 22 }),
 status => 404;

post -> 'get-prime' {
 request-body -> (:$min!, :$max!) {
 with ($min..$max).grep(*.is-prime).pick -> $number {
 content 'application/json', { :$number }
 }
 else {
 not-found;
 }
 }
}

There's now support for
implementing an OpenAPI

specification using Cro

Cro::OpenAPI::
RoutesFromDefinition

- Avoids repeating path and method

- Enforces validation rules
- Otherwise, just like a route block

openapi: "3.0.0"
info:
 version: 1.0.0
 title: Prime Service
paths:
 /is-prime/{number}:
 get:
 ...
 /get-prime:
 post:
 ...

 /is-prime/{number}:
 get:
 summary: Checks if a number is prime
 operationId: is-prime
 parameters:
 - name: number
 in: path
 description: The number to check
 required: true
 schema:
 type: integer
 responses:
 ...

 /is-prime/{number}:
 get:
 ...
 responses:
 '200':
 description: Result of primality test
 content:
 application/json:
 schema:
 required:
 - number
 - prime
 properties:
 number:
 type: integer
 prime:
 type: boolean

 /get-prime:
 post:
 summary: Generate a prime number
 operationId: get-prime
 requestBody:
 required: true
 content:
 application/json:
 schema:
 required:
 - min
 - max
 properties:
 min:
 type: integer
 max:
 type: integer
 responses:
 ...

 /get-prime:
 post:
 ...
 responses:
 '200':
 description: Generated a prime in the range
 content:
 application/json:
 schema:
 required:
 - number
 properties:
 number:
 type: integer
 '400':
 description: No prime in the range specified

openapi 'api.json'.IO, {
 ...
}

openapi 'api.json'.IO, {
 operation 'is-prime', -> Int $number {
 content 'application/json',
 { :$number, :prime($number.is-prime) }
 }

 ...
}

openapi 'api.json'.IO, {
 operation 'is-prime', -> Int $number {
 content 'application/json',
 { :$number, :prime($number.is-prime) }
 }

 operation 'get-prime', -> {
 request-body -> (:$min, :$max) {
 with ($min..$max).grep(*.is-prime).pick -> $number {
 content 'application/json', { :$number }
 }
 else {
 not-found;
 }
 }
 }
}

It's now much easier to
create and consume

middleware

HTTP Request Parser

HTTP Response Serializer

Application

TCP/TLS Connection

TCP/TLS Replier

Requests are
pushed through
an asynchronous

pipeline

HTTP Request Parser

HTTP Response Serializer

Application

TCP/TLS Connection

TCP/TLS Replier

Server-level middleware

 before-parse

 before

 after

 after-serialize

Could always just write
transforms before now

However, new roles get rid

of the boilerplate

HTTP Request Parser

HTTP Response Serializer

Application

TCP/TLS Connection

TCP/TLS Replier

Cro::HTTP::Middleware::Request

 before

HTTP Request Parser

HTTP Response Serializer

Application

TCP/TLS Connection

TCP/TLS Replier

Cro::HTTP::Middleware::Response

 after

class HSTS does Cro::HTTP::Middleware::Response {
 has Int $.max-age = 31536000;

 method process(Supply $responses) {
 supply whenever $responses -> $rep {
 $rep.append-header: 'Strict-transport-security',
 "max-age=$!max-age"
 emit $rep;
 }
 }
}

HTTP Request Parser

HTTP Response Serializer

Application

TCP/TLS Connection

TCP/TLS Replier

Cro::HTTP::Middleware::Conditional

 before

 after
?

class LocalOnly does Cro::HTTP::Middleware::Conditional {
 method process(Supply $requests) {
 supply whenever $requests -> $request {
 if $request.connection.peer-host eq '127.0.0.1' | '::1' {
 # It's local, so continue processing.
 emit $req;
 }
 else {
 # It's not, so emit a 403 forbidden response.
 emit Cro::HTTP::Response.new(:$request, :403status);
 }
 }
 }

HTTP Request Parser

HTTP Response Serializer

Application

TCP/TLS Connection

TCP/TLS Replier

Cro::HTTP::Middleware::RequestResponse

 before

 after
?

Middleware can also be
applied in route blocks

my $app = route {
 before LocalOnly.new;
 after HSTS.new;

 ...
}

Apply middleware written as a class

my $app = route {
 before {
 forbidden unless .connection.peer-host eq '127.0.0.1' | '::1';
 }
 after {
 header 'Strict-transport-security',
 'max-age=31536000; includeSubDomains'
 }

 ...
}

Write simple middleware inline

before / after
Composed around the route block

Run unconditionally

before-matched / after-matched

Wrap around a handler
Run if a route was matched

(These are the Cro 0.8.0 semantics. Prior to that, before/after were used to mean

what before-matched and after-matched now mean, and there was no direct
equivalent to the new before/after semantics.)

Session handling and auth
are implemented as

middleware

class My::App::Session does Cro::HTTP::Auth {
 has $.is-logged-in;
 has $.is-admin;
 has @.recently-viewed-items;
}

Declare a session/user object

subset Admin of My::App::Session where .is-admin;
subset LoggedIn of My::App::Session where .is-logged-in;

If needed, declare Perl 6 subset
types to distinguish types of user

my $app = route {
 get -> LoggedIn $user, 'my', 'profile' {
 # Use $user in some way
 }

 get -> Admin, 'system', 'log' {
 # Just use the type and don't name a variable, if
 # the session/user object is not needed
 }
}

Match on them in routes

my $app = route {
 before Cro::HTTP::Session::InMemory[My::App::Session].new(
 expiration => Duration.new(60 * 15),
 cookie-name => 'MY_SESSION_COOKIE_NAME'
);

 ...
}

Apply session middleware

Middleware included for:

Persistent sessions
Basic authentication

JSON Web Tokens

Web-based login/logout is left for
the application to handle

Further assistance planned in the

future Cro::HTTP::WebApp

Stubbed projects now
include a Dockerfile

And we provide several Cro base

images, to give you quicker
container builds

All of our Cro applications at
Edument are deployed in
containers running on a

Kubernetes cluster

Cro App 1

Cro App 2

Cro App 3

Apache
Reverse Proxy

HTTPS Cert
Caching
Stateless

(so can scale out)

Cro App 1

Cro App 2

Cro App 3

Apache
Reverse Proxy

HTTPS Cert
Caching
Stateless

(so can scale out)

Only expose
Apache to the
outside world

Place all static assets in a route
block and apply middleware to

add a cache control header
sub assets() {
 route {
 after-matched {
 cache-control :public, :max-age(180);
 }
 get -> 'css', *@path {
 static 'static-content/css', @path
 }
 get -> 'js', *@path {
 static 'static-content/js', @path
 }
 }
}

And where are we going

in the next year?

Cro::HTTP::WebApp

If folks are going to use Cro as a web
framework, we should serve them better

So far, we've a 6-y template engine in
development (and, uh, production...)

Planning some login/logout plumbing, CSRF

protection, and so forth

Reverse Proxy Support

Initial implementation coming in Cro 0.8.0

Makes the easy things easy:

Plus many features to make the harder things
(request/response processing) possible

/user/foo proxied to http://user-service/foo
delegate <user *> => Cro::HTTP::ReverseProxy.new:
 to => 'http://user-service/';

Reliability patterns

Timeouts

Retries

Throttling

Circuit breaker

Portability

MacOS
Windows

Wherever our userbase
leads us

When folks miss something, or stub their toe
on something repeatedly, we look for ways to

make things better

Questions?

Web: http://cro.services/
Twitter: @croservices

IRC: #cro on freenode.org

