
Perl 6 Concurrency

Jonathan Worthington | Edument

Hi. I'm Jonathan.

Hi. I'm Jonathan.

I do Perl 6 stuff....
Perl 6 concurrency designer

MoarVM founder and architect
Rakudo compiler developer

Hi. I'm Jonathan.

I do Perl 6 stuff....
Perl 6 concurrency designer

MoarVM founder and architect
Rakudo compiler developer

And I lead the Edument Prague office...
Developer tooling and compiler consultancy

Founder of Cro and Comma

Today...

The essence of Perl 6 concurrency
Key concepts and mechanisms

The essence of Perl 6 concurrency
Key concepts and mechanisms

The application of Perl 6 concurrency
A case-study from a production application

The essence of Perl 6 concurrency
Key concepts and mechanisms

The application of Perl 6 concurrency
A case-study from a production application

The future of Perl 6 concurrency
Where are we heading?

The

essence
of Perl 6 Concurrency

The essence of Perl 6
concurrency and parallelism
reflects the essence of the

Perl language family…

A Perlish language is

multi-paradigm

Because when we have a
range of problem-solving
tools, we can choose the
most appropriate one for

the problem at hand

Concurrency

Trying to get the right result
when we have multiple,

possibly competing, tasks with
overlapping start/end times

We don't choose concurrency.

Concurrency chooses us.

Parallelism

Exploit multi-core hardware to
do the same task, and deliver
equivalent results, but in less

wallclock time.

Concurrency is part of the

problem domain.

Parallelism is part of the

solution domain.

With concurrency, correctness

is domain specific.

With parallelism, correctness

is just equivalence.

Concurrency and parallelism
are best addressed by

different tools.

In fact, there's
different kinds of

parallelism…

Task parallel

Task parallel

Data parallel

And different
approaches to
concurrency…

Concurrent objects

Object

Method calls

Concurrent objects

Event processing

Object

Method calls

Event
Processor

Event Event Event

Perl 6 provides for all
of these, and more

A Perlish language makes the

easy things easy

my ($input-config, $app-config) =

 do {

 load-yaml slurp $input-file

 },

 do {

 from-json $_ with slurp $*HOME.add('.fooconf')

 }

Load and parse two
files in parallel

my ($input-config, $app-config) = await

 start {

 load-yaml slurp $input-file

 },

 start {

 from-json $_ with slurp $*HOME.add('.fooconf')

 }

.say for (1..*)

 .grep(-> $n { $n.is-prime && $n eq $n.flip })
 .head(100);

Parallel search for 100
palindromic primes

.say for (1..*)
 .hyper(batch => 512, degree => 6)
 .grep(-> $n { $n.is-prime && $n eq $n.flip })
 .head(100);

class Cache {
 has %!entries;
 method add(Str $key, Any $value --> Nil) {
 %!entries{$key} = $value;
 }
 method lookup(Str $key --> Any) {
 %!entries{$key} // fail "No entry '$key'"
 }
}

Acquire a lock around
all method calls

monitor Cache {
 has %!entries;
 method add(Str $key, Any $value --> Nil) {
 %!entries{$key} = $value;
 }
 method lookup(Str $key --> Any) {
 %!entries{$key} // fail "No entry '$key'"
 }
}

Re-run a script
whenever it changes

react {
 my $current-proc;
 whenever $script.watch.unique(:as(*.path), :expires(1)) {
 .kill with $current-proc;
 $current-proc = Proc::Async.new($*EXECUTABLE, $script);
 my $done = $current-proc.start;
 whenever $done {
 $current-proc = Nil;
 }
 }
}

react {
 my $current-proc;
 whenever $script.watch.unique(:as(*.path), :expires(1)) {
 .kill with $current-proc;
 $current-proc = Proc::Async.new($*EXECUTABLE, $script);
 my $done = $current-proc.start;
 whenever $done {
 $current-proc = Nil;
 }
 }
}

react {
 my $current-proc;
 whenever $script.watch.unique(:as(*.path), :expires(1)) {
 .kill with $current-proc;
 $current-proc = Proc::Async.new($*EXECUTABLE, $script);
 my $done = $current-proc.start;
 whenever $done {
 $current-proc = Nil;
 }
 }
}

react {
 my $current-proc;
 whenever $script.watch.unique(:as(*.path), :expires(1)) {
 .kill with $current-proc;
 $current-proc = Proc::Async.new($*EXECUTABLE, $script);
 my $done = $current-proc.start;
 whenever $done {
 $current-proc = Nil;
 }
 }
}

react {
 my $current-proc;
 whenever $script.watch.unique(:as(*.path), :expires(1)) {
 .kill with $current-proc;
 $current-proc = Proc::Async.new($*EXECUTABLE, $script);
 my $done = $current-proc.start;
 whenever $done {
 $current-proc = Nil;
 }
 }
}

A Perlish language makes the

hard things possible

Perl 6 provides
access too…

OS-level threads

Locks
Atomic operations

Don't use them!*

Don't use them!*

* Unless you're implementing new
concurrency or parallelism paradigms

and data structures in Perl 6

A Perlish language offers

whip-up-ability

When we "whip up a solution",
we're typically taking existing
components, which we then

wire together

And wiring things together
depends on them having a

common interface

Promise
A single, asynchronously

produced, value

Supply
A stream of asynchronously

produced values

A Supply can be…

Network packets
WebSocket messages

File system notifications
Child process output

UI events
Timer ticks

Domain events

A Perlish language will

torture the language
implementer for the sake

of the language user

M : N

M : N
High-level

tasks
OS-level
threads

M : N
High-level

tasks
OS-level
threads

Many ~Core-count

await

Suspend the current
high-level task until the

thing it needs is available

async?

 No async!

No need to refactor all of the
callers in order to use await!

Just save the whole stack.

A Perlish language helps us to

do the right thing

What does the
supply/whenever

syntax give us?

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Thanks to using it, this code
will work robustly…

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Unsubscription, however
things end

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Unsubscription, however
things end

If the data
source

completes…

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Unsubscription, however
things end

If the data
source

completes,
cancel the
timeout

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Unsubscription, however
things end

If we hit the
timeout…

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Unsubscription, however
things end

If we hit the
timeout,
close the

data source

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic exception
propagation

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic exception
propagation

If the data
source

crashes…

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic exception
propagation

If the data
source

crashes,
cancel the
timeout,

convey the
exception

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic cleanup upon
downstream close

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic cleanup upon
downstream close

If our
consumer

unsubscribes…

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic cleanup upon
downstream close

If our
consumer

unsubscribes,
close the data

source and
cancel the
timeout

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic concurrency
control

sub timeout(Supply $source, Real $seconds --> Supply) {

 supply {

 whenever $source {

 emit $_;

 LAST done;

 }

 whenever Promise.in($seconds) {

 die X::Timeout.new;

 }

 }

}

Automatic concurrency
control

We'll only ever
be in one
whenever

block at a time

Even if we remembered all
of these, it'd be a huge
amount of boilerplate

Instead, we just Do The

Right Thing

The

application
of Perl 6 Concurrency

eAsii

A tool to assist insurance or
reinsurance undertakings with

calculation of the European regulatory
standard formula (Solvency II, Pillar I)

and associated reporting to the
supervisory authority via XBRL

(Solvency II, Pillar III).

EasiiLang

A pure, functional, non-Turing
Complete language

The entire calculation forms a DAG, so
can see the path from input to result

Syntax inspired by Perl 6

EasiiLang was easy...

Parsed by a Perl 6 grammar

Produces a tree, which is walked to
evaluate the expression

Perl 6 is good at this stuff. But, that's

not the focus for today...

Architecture
Backend

Exposes a HTTP API (using Cro)
Versioned Input Storage (uses a SQLite database)

Live Dataset (in-memory reactive calculation)

Architecture
Backend

Exposes a HTTP API (using Cro)
Versioned Input Storage (uses a SQLite database)

Live Dataset (in-memory reactive calculation)

Frontend
JavaScript Application (qooxdoo, transpilation)

View, View Model, Store

Architecture
Backend

Exposes a HTTP API (using Cro)
Versioned Input Storage (uses a SQLite database)

Live Dataset (in-memory reactive calculation)

Frontend
JavaScript Application (qooxdoo, transpilation)

View, View Model, Store

HTTP WebSocket

 Cro

Libraries for building distributed
systems; currently mostly used for

building HTTP applications

Request and response processing
pipeline is a set of steps connected

using Supply asynchronous

Cro has...

WebSocket support

Reactive middleware

Log::Timeline integration, to allow
tools to trace the request pipeline

6 requests being
served in parallel

Drill down into
the pipeline

See the cost of
each stage

Log::Timeline

Can use it to do application-level
logging also

Doing this helped us to understand

the application behavior, and guided
our use of parallelism

The model

Developed by mathematicians based
on European regulations

Loaded at application startup

During model development, reloaded

when the model is changed

The current model
350+ modules

A YAML file for each. Totals
over 100,000 lines of YAML.

Nearly 4,000 formulas
25,000 lines of EasiiLang

between the modules

64 Excel Documents...
Based on the legal

requirement of the European
supervisory authority

...cached as 7 MB of JSON
Since reading from Excel
every time we load the

model is too slow

5,500+ lines of CSV
Containing parameters, such

as country-specific data

2000+ translation keys
And many more to come,

written in .po files

Model loading

As the model grew, model reloads
became long enough to be annoying

Can we parallelize?

First, need to consider the data
dependencies of model loading

Can we parallelize?

First, need to consider the data
dependencies of model loading

The check phase needs
layouts, parameters, and

all modules

Can we parallelize?

First, need to consider the data
dependencies of model loading

Each module can be parsed and
compiled independently...

Can we parallelize?

First, need to consider the data
dependencies of model loading

...and without knowing the
parameters and layouts.

Data parallelism

When we apply the same operation
to many data items

Parallelism comes from partitioning

the data - into items or batches - and
spreading them over worker threads

my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .map(-> $file {

 my $yaml = Easii::Log::ParseModuleYAML.log: $task, :file(~$file), -> {

 self!load-yaml($file, $schema, $problems)

 }

 with $yaml {

 Easii::Log::CompileModule.log: $task, :file(~$file), -> {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 }

 });

Module loading

my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

Module loading
(Log::Timeline use omitted for simplicity)

Load in parallel
my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

But wait...
my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

This problem collector
may be used concurrently

Not safe
my class Problems {

 has @.errors;

 method add-error($error--> Nil) {

 @!errors.push($error);

 }

}

Potential race
on this

Make it a monitor

Acquires a lock automatically.

use OO::Monitors;

my monitor Problems {

 has @.errors;

 method add-error($error--> Nil) {

 @!errors.push($error);

 }

}

Huge improvement!

Takes 30% of the time it used to

Huge improvement!

Takes 30% of the time it used to

Up to 6 modules
loaded in parallel

Task parallelism

Identify different, independent, tasks
that we could do in parallel

Have different threads do them

Task parallelism?

There's an opportunity!

Load layouts and
parameters in parallel

with the modules

Load asynchronously
my @modules = @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

my $modules-load = start @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 });

Works lazily!

my $modules-load = start @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file {

 my $yaml = self!load-yaml($file, $schema, $problems) ;

 with $yaml {

 Easii::Model::Module.new(parsed => $yaml,

 source => $file.basename)

 }

 })

 .eager;

Load asynchronously
my $parameter-load = start self!load-parameters(

 $parameters-path, $problems);

my $layout-load = start self!load-layouts(

 $layouts-dir, $cache-dir, $problems);

Load asynchronously
self.bless:

 modules => await($modules-load),

 parameters => await($parameter-load),

 layouts => await($layout-load),

 dpm => self!load-dpm($dpm-dir, $cache-dir),

 load-errors => $problems.errors

An improvement?

A little, though not that much more,
due to resource contention

Looking closer...

Looking closer...

Huge module that
takes ages to parse

Looking closer...

Compilation of that
module (quite quick)

Looking closer...

Only stuff for one CPU
core to do

Do the big files first

my $modules-load = start @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file { ... })

 .eager;

my $modules-load = start @files

 .grep(/ \.(yaml|yml) $/)

 .race(batch => 1, degree => 6)

 .map(-> $file { ... })

 .eager;

my $modules-load = start @files

 .grep(/ \.(yaml|yml) $/)

 .sort(-*.s)

 .race(batch => 1, degree => 6)

 .map(-> $file { ... })

 .eager;

It helps!

Model loading in around 20% of the
original time - with few code changes!

Concurrency too

Parallelism gave us an easy speedup

However, implementing eAsii was also
greatly aided by Perl 6's concurrency
support - of note, for live calculations

Datasets

A set of inputs, either entered
manually, uploaded, or sometimes

derived from other inputs

Current test customer dataset has
250,000 inputs (and each input has a
change history, for audit purposes)

Processing inputs
Sync call Supply

Processing inputs

Cro route handler
HTTP
POST

Sync call Supply

Processing inputs

Cro route handler
HTTP
POST DB

1. Write to
database

Sync call Supply

Processing inputs

Cro route handler
HTTP
POST DB

1. Write to
database Change! 2. Emit an event

Async

Propagation Queue

Sync call Supply

Processing inputs

Cro route handler
HTTP
POST DB

1. Write to
database Change! 2. Emit an event

Async

Propagation Queue

Live Dataset

Changes!

Sync call Supply

Processing inputs

Cro route handler
HTTP
POST DB

1. Write to
database Change! 2. Emit an event

Async

Propagation Queue

Live Dataset
WebSocket
messages

Changes!

Sync call Supply

Cro WebSocket
Handler

Processing timeline

HTTP request completes quickly,
recalculation runs in the background

Live dataset setup
class Easii::LiveDataset {

 has Int $.dataset is required;

 has Supply $.input-source is required;

 has Supplier $.changes .= new;

}

Live dataset setup
class Easii::LiveDataset {

 has Int $.dataset is required;

 has Supply $.input-source is required;

 has Supplier $!changes .= new;

 submethod TWEAK(:%initial-inputs) {

 start react {

 my $matching-input = $!input-source

 .grep(*.dataset == $!dataset);

 whenever $matching-input {

 # Perform reclculation...

 }

 }

 }

}

if %formula-changes {

 $!version++;

 $!changes.emit: Easii::LiveDataset::Change.new:

 :$!version, :$module-key, :%formula-changes;

}

Live dataset changes

If there recalculation determines
there are changes to a module, emit

an event containing them

WebSocket
get -> LoggedIn $user, 'easii', 'setupWebsocket', Int :$dataset {

}

WebSocket
get -> LoggedIn $user, 'easii', 'setupWebsocket', Int :$dataset {

 $app.with-current: $user.customer, -> $state {

 }

}

WebSocket
get -> LoggedIn $user, 'easii', 'setupWebsocket', Int :$dataset {

 $app.with-current: $user.customer, -> $state {

 web-socket :json, -> $incoming {

 supply {

 }

 }

 }

}

WebSocket
get -> LoggedIn $user, 'easii', 'setupWebsocket', Int :$dataset {

 $app.with-current: $user.customer, -> $state {

 web-socket :json, -> $incoming {

 supply {

 my $live-dataset = $state.get-live-dataset($dataset);

 whenever $live-dataset.changes -> $change {

 }

 }

 }

 }

}

WebSocket
get -> LoggedIn $user, 'easii', 'setupWebsocket', Int :$dataset {

 $app.with-current: $user.customer, -> $state {

 web-socket :json, -> $incoming {

 supply {

 my $live-dataset = $state.get-live-dataset($dataset);

 whenever $live-dataset.changes -> $change {

 my $change-set = $change.for-json;

 emit $change-set;

 }

 }

 }

 }

}

We also...

Data-parallelize formula calculation in
modules with many instances

Use a Channel to send code to the

live dataset for evaluation, the
concurrency control meaning we don't

evaluate it when recalculating

Perl 6: good choice

Perl 6's concurrency features helped us
to deliver on the reactive aspects of

the application

Meanwhile, the parallelism gave us a
bunch of easy performance gains

Lesson: tools are good

Tooling to visualize what's going on in a
concurrent/parallel system is a huge win

The

future
of Perl 6 Concurrency

We have a good story - but
something is missing

Something, perhaps, that will
turn out to be a differentiator

Safety

There's smart folks who feel
the future is static proofs

There's others who argue to

bind as late as possible

"We need to write tests to
assert correctness anyway"

"It's easier to debug a

concrete situation than a
theoretical type error"

But what if the failure is a
data race that happens

1 time in 10,000?

What we kind of need is...

What we kind of need is...

….ummm….

What we kind of need is...

….ummm….

reliable failure!

We need a Perl-ish solution.

That's a research problem.

But it's one I believe we
should take on.

Why?

So we can make getting the
easy things right easier

So we can make getting the
hard things right possibler

So we can make the whipped
up concurrent or parallel

program do the right thing

Because we torment the
language implementer for the

sake of the language user

These are the things that
define a Perlish language

These are the things that
define a Perlish library

Being easy to get in to

Whipping up ideas together

Trying to do the right thing

Realizing others are trying to do
the right thing

That, to me, seems like a way
to be a Perl community

Thank you!

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

cro.services

commaide.com

