The Raku language

Iin 2 minutes

Motivation for building an IDE
using the Intellil platform

Making a language support plugin
on the Intellil platform

Creating a standalone IDE
based upon that plugin

Releasing the IDE

on various platforms

There's days worth of things to say
on these topics, but we have an
hour, so...

| will offer an overview of what needs doing to
build support for a new language and/or create
an IDE on the IntelliJ platform

Along the way, some lessons we learned the
hard way, so you can make different mistakes

The Raku language

In 2 minutes

Multi-paradigm

Because different problems are
best solved with different
approaches

Feature-rich

Because complexity not tackled in
the language pops up in all of the
programs written using it

Innovative, but practical

 Built-in grammars for parsing

. Grapheme-level Unicode strings

J await without the async ceremony

 First-class syntax for working safely
with reactive streams

J Programmable compile time, to do

dynamic stuff, but retain more safety

Motivation for building

an IDE
using the IntelliJ platform

IDE

Curated Development
Experience

Tools for particular
development scenarios
+

Well thought out defaults

Comma is an IDE for developing
libraries and applications in Raku

Free community version
Subscription model for complete version

We also ship it as an IntelliJ platform plugin

method !assemble-request(Str $method, Cro::Uri $url, %options --= Cro::HTTP::Reques

my $target = $url.path || '/';

$target ~= "?{$url.query}" if $url.query;

my $request = Cro::HTTP::Request.new(:$method, :$target);

$request .append-header('Host', $url.host) ;

if self {
$reguest.append-header('content-type', %.content-type) if %.content-type;
sel f!set-headers($request, @.headers.List);
$.cookie-jar.add-to-request($request, $url) if %.cookie-jar;

if %'auth && !(%options<auth=:exists) {
self! form-authentication{$request, %!auth, %options<if-asked=:exists);

h
h
my Bool %body-set = False;
for %options.kv -= $, $value {
when 'body' {
if !'$body-set {

#| will be compiled on first use.

sub template-location(IO() $location, :%compile-all --> Nil) is export {
my $template-repo = get-template-repository;
$template-repo.add-location($location);

sub compile-dir(Cro: :WebApp::Template: :Repository $template-repo, IO::Path $locatio
for dir($location) {
when .f {

he-control :public, :max-age(180);
'‘css', *@path {]
atic 'static-content/css’', @path

'ijs', *@path {
atic 'static-content/js', @path

'images', *@path {
atic 'static-content/images', @path

'webfonts', *@path {
atic 'static-content/webfonts', @path

'favicon.ico' {
atic 'static-content/favicon. ico'

method describe($product) {
my $shortened = $product.name.chars > 100

7?7 Sproduct.name.substr(0, 100) ~ '...
'l Sproduct.name;

return $shortened ~ "\n" ~ %$product.description;

96

Inline documentation

assets() {
route {
after-matched {
cache-control , ()

hy

get -= y 3 {
static

}

get -= .k {
static

¥

Running tests

¥ (=) Test Results

v ©t/basic.t

1 - Elements count starts out as 0

- Empty queueis Falsey
- Dequeue of an empty queue Fails
- Correct exception type in Failure
- Can engueue avalue
- Can engueue anothervalue
- Correct element count after bwo engueues
- Dequeue gives the first engueuedvalue
9 - Correct element count after two engueues and one dequeue
10 - Mon-empty queue is truthy
11 - Can enqueue another value after dequeueing

B B T Wy I S N) L

co

2 /151 statements; 94%))
(142 /151 statements; 94%))
ebApp (142 / 151 statements; 94%))
Template (139 / 147 statements; 95%))
= AST.pm6 (44 [48 stakterments; 92%))
= ASTBuilder.pmé& (54 / 54 staternents; 100

= Builtins.pm6 (4 / 5 statements; 80%))

= Parser.pm6 (21 /22 skatements; 95%))

». Repository.pmé& (16 / 18 statements; 899
= Template.pm6& (3 / 4 statermnents; 75%))

t-data

-imy class TemplateMacro doe
has Str $.name 1s requ
has Str @.parameters;

method compile() {
my $should-export

{

my $*IN-SUB =
my $params = (
my $trait = $s
"(sub __ _TEMPLA
'join
"} &&

my @terms = @!terms;

my @infixes = @!infixes;

my $compiled = '(' ~ @terms.shift.compile();
while @infixes {

¥

return $compiled ~ ')';

=
I}
my class EscapeText does Node is export {
L has Node $%.target;

method complle{] {

Profiling

f3 ProfilingResults El Console »*

st

Routines Call Graph

= Thread: |Threadtt4 ~ Time: 26,434 us
» THREAD-ENTRY
<anon=>
run-one
<anon=
<anon=
SEEnE sigil-tag:sym<sub>
<anon>
<anon=> /Nib/Cro/WebApp/Ternplate/Parser.pmé: 122
load-template
parse Total 7,682p
TOP Entries 2
sequence-element Per entry 3,841 lcursor_p...
Iprotoreg Inlined 0.0% Ireduce
seguence-element:sym<sigil-tag> Spesh 0.0%
sigil-tag Callees
protoreg Callee Entries Inlined % Time
sigil-tag:sym<conditions sequence-el.. 8 0.0 70.372%
expression lcursor_pass sequ... after MA... - lcursor_pass 2 0.0 16.037%
I Ireduce ‘prot. . signature 2 0.0 4,556%
§ after 4 0.0 2.929%
MATCH 8 0.0 2.122%
identifier 2 0.0 0.312%
lalt 4 0.0 0.286%
lcursor_capt.. 10 0.0 0.234%
<anon= 12 0.0 0.143%
<anon= 2 0.0 0.078%
<anon:> 2 0.0 0.078%
DYNAMIC 4 0.0 0.065%
<@Non= 8 0.0 0.052%

Concurrency visualization

Why might you build an IDE?

You might make an IDE because...

You want an IDE focused on a particular
programming language

You want to distribute an IDE with a selected
set of plugins aimed at a particular use case

You want to provided a branded tool

But building an IDE from scratch
would be a really

huge

amount of work!

We decided to build Comma on
the Intelli) platform because it...

v
v

Offers a mature, cross-platform, framework

Provides numerous "generic" IDE features
(quality editor, file tree, VCS integration, Ul)

Is known to sup
should be flexib

Is open source,
products built o

oort many languages, so it
e enough

out still permits commercial
nit

Making a language

support plugin
on the IntelliJ platform

I'm a compiler hacker, so...

‘4

strings and bytes

¥

trees and graphs

Source code
text
—
almost impossible to do
anything interesting with

Tokenization

(aka. lexical analysis, lexing, scanning)

for ~10 000 {

say "Strings are boring";

}

Tokenization

(aka. lexical analysis, lexing, scanning)

for ~10 000 {

say "Strings are boring";

}

Keyword

Tokenization

(aka. lexical analysis, lexing, scanning)

for 710 000 {

say "Strings are boring";

}

Keyword
Operator

Tokenization

(aka. lexical analysis, lexing, scanning)

for ~10 000 {

say "Strings are boring";

}

Keyword
Operator
Numeric literal

Tokenization

(aka. lexical analysis, lexing, scanning)

for 710 000 {

say "Strings are boring";

}

Keyword
Operator
Numeric literal
Opening brace

Tokenization

(aka. lexical analysis, lexing, scanning)

for 710 000 {

say "Strings are boring";

}

Keyword Function name
Operator

Numeric literal

Opening brace

Tokenization

(aka. lexical analysis, lexing, scanning)

for 710 000 {

say "Strings are boring";

}

Keyword Function name
Operator String literal
Numeric literal

Opening brace

Tokenization

(aka. lexical analysis, lexing, scanning)

for 710 000 {

say "Strings are boring";

}
Keyword Function name
Operator String literal
Numeric literal Semicolon

Opening brace

Tokenization

(aka. lexical analysis, lexing, scanning)

for 710 000 {

say "Strings are boring";

}
Keyword Function name
Operator String literal
Numeric literal Semicolon

Opening brace Closing brace

Using tokens, we can do some
mildly interesting stuff, like...

J Syntax highlighting

(J Brace and quote matching

J Brace and quote insertion

Using tokens, we can do some
mildly interesting stuff, like...

J Syntax highlighting

. Brace anc

. Brace anc

guote matching

guote insertion

Once we have a tokenizer, we can easily wire
these up on the IntelliJ platform.

Using tokens, we can do some
mildly interesting stuff, like...

General principle: we
provide the "backend",
and the Intelli) platform

provides the Ul

Once we have a tokenizer, we can easily wire
these up on the IntelliJ platform.

Tokens

flat stream of stuff
—

no idea if it's valid syntax, let
alone what the code means

Parsing

for 7210 000 {

say "Strings are boring";

}

Parsing

for 210 000 {

say "Strings are boring";

for loop statement

Parsing

for 710 000 {
say "Strings are boring";

}

for loop statement

range upto operator (A)

Parsing

for 710 000 {
say "Strings are boring";

for loop statement

range upto operator (")

integer literal 10000

Parsing

for 710 000 {
say "Strings are boring";

for loop statement

range upto operator (")

integer literal 10000

Parsing

for 7210 000 {
say "Strings are boring";

for loop statement

range upto operator (")

integer literal 10000 function calll

Parsing

for 7210 000 {
say "Strings are boring";

for loop statement

block

range upto operator (")

integer literal 10000 function calll

function lookup
say

Parsing

for 7210 000 {
say "Strings are boring";

for loop statement

block

range upto operator (")

integer literal 10000 function calll

function lookup string literal
say "Strings are boring"

Writing tokenizers and
parsers is "interesting”

(Like most things, one gets much better
at it with practice and experience)

Raku has "grammars" built right
into the language - and uses them
to define its own syntax!

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

syntax that is
challenging with

traditional approaches

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

syntax that is
challenging with

traditional approaches

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

really expects there to
be a tokenizer and a

parser...

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

really expects there to
be a tokenizer and a

parser...

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

Raku has "(...and it expects them ght
to be written in

Into the I‘k something that runs on em
the JVM!

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

Ra ku haS "(...and it expects them —
to be written in

into the | something that runs on ch
the JVM!

They are "scannerless” - that is to
say, we don't write a separate
tokenizer by ourselves

Fine. I'll write a compiler.

Fine. I'll write a compiler.
Subset of Raku grammars with

token and parse node annotations

Tokenizer and parser matching the
interfaces of the Intelli) platform

For more conventional battles...

Check out Grammar-Kit by JetBrains

rammar-kit] - .../grammars/Grammar.bnf [grammar-kit]

; block_comment=" r"-'_".'JCKﬁ: ‘w[SALIEAT YL Tokens PSI mix-in

classes
implements("rule|attri)="org. intellij.grammar.psi.BnfNamedElement"' /

extends("rule|attr")="org=intellij.grammar.psi.impl. BnfNamedImpl'

mixin(" reference_or_token")="0rg.intellij.grammar.psi.impl.BnfRef0rTokenImpl'
mixin{"string_literal_expression")="p&g.intellij.grammar.psi.impl.BnfStringImpl’
aextends("paren_.*expression")=parenthesiz

}
Matched rules

external grammar ::= parseGrammar grammar_element

private grammar_element ::= !<<cof>z (attrs | rule) Pinned predicate

{ pin=1 recoverWhile=grammar_element_recover f
private grammar_element_recover::=!('{'|rule_start) Wf externall call

rule ::= rule_start gxpression attrs? 7 {pin=2}

private rule_start ::= modifiers i ———— Pin marker
modifier ::= 'private' | 'external' | 'meta’
| "inner' | 'left' | ‘upper' | 'fake' T

——— Match by text
attrs ::= attr * {pin=1}
attr ::= attr_start attr_value 1

{ pir=1 recoverwhile=attr_recover }

private attr_start ::= (attr_pattern |)
{ pin(".*")="attr_pattern" }

private attr_start_simple ::= attr_pattern?
nrivata attr recnuvar r:= 1 | attr etart)

Match by token type

N X

Grammar-Kit

Generates a JFlex tokenizer, a Java parser,
and PS| elements (more on those soon)

Grammar development support in the IDE

Features especially for handling parsing of
incomplete code / error recovery

Live preview (but for most interesting
languages, you'll have to maintain the
tokenizer by hand, then can't use preview)

It's good to test parsers, but...

The typical way to write parser tests on the
IntelliJ platform checks that they produce the
exact expected structure

Thus even small tweaks break the tests

Have parser tests, but start out with "does it
parse at all”, and commit to structure later

Program
Structure
Interface

The way the IntelliJ
platform models
source code

(Or anything that we might think of that way,
such as code compiled in a JAR file)

Each program element is
represented by a PsiElement

for loop statement

block

range upto operator (")

integer literal 10000 function calll

function lookup
say

Typically for each program
element we have an interface
that extends PsiElement

This is then implemented by a
class that extends some base
class from the IntelliJ platform

Typically for each program
element we have an interface

that extends PsiEeement
@

This i \ by a
Why bother with the
Cla(interface? | ain't no base

abstraction aficionado...
iatform

Typically for each program
element we have an in’Eerface
that extends PsiEeement

We can have alternate

implementations not backed
by source code (such as
library metadata)...

Typically for each program
element we have an in’gerface
that extends PsiEeement

...giving us a uniform

interface over source and
external dependencies,
which makes things easier!

In Comma we had a script to generate
empty PSI interfaces and classes, and
then added code to them

Grammar-Kit generates them for you -
but then you need to put logic in mixin
classes and create other interfaces, so it's
not so much of a win in the end

Based around the tree of PSI
elements, we can implement...

J Code folding
J Code formatting

J Various localized code analyses

Jd Smart-enter, move statement, etc.

But we're still missing something big...

sub longest(Str $a, Str $b) {
$a.chars > $b.chars ?? $a !! $b

}

say longest

year", "month";

We want to link variable usages
to their declarations....

sub longest(Str $a, Str $b) {
$a.chars > $b.chars ?? $a !l $b

}

say longest

year", "month";

...and sub calls to the subroutine
being called...

sub longest(Str $a, Str $b) {
$a.chars > $b.chars ?? $a !l $b

}

say longest "year", "month";

...and we'd like to
provide auto-complete
for all of these too

PS| References

Any PS| element can implement the
getReference method

The reference object is used to resolve
to a precise target, as well as to
getVariants for auto-complete

How?

By implementing the lookup rules of the
programming language in question

My advice: research how compilers or
interpreters of the language do it, and
structure your solution similarly

Once we have PSI references, we

can do far more...

J Auto-complete, parameter info

J Unoc

J Find

eclared variable annotations etc.

usages

J Rename refactor

But in a huge project, is this efficient?

Once we have PSI references, we
can do far more...

PSI trees use quite a
lot of memory...

But in a huge project, is this efficient?

Once we have PSI references, we
can do far more...

...and tokenizing and
parsing ain't cheap.

But in a huge project, is this efficient?

Stub PSI

Store a subset of the information from
the PSl tree in lightweight objects

Typically, just key info about declarations

We code up serialization/deserialization,
and the platform saves them to disk

File Point.rakumod

class Point

method x method is-at-origin

attribute S!x && operator

== operator == operator

attribute S!x literal 0 @ attribute S!ix literal O

File Point.rakumod

class Point

method x

method is-at-origin

attribute S!x && operator

== operator == operator

attribute S!x literal 0 |l attribute S!x literal O

m Has stub PSI

Stub PSI indexes

Can put stub PSI elements into indexes,
TRLEIEES

Really useful for implementing the
"Navigate To..." feature, and potentially
reference resolution in some languages

Running stuff

Create run configuration types
(for example, Raku application, Raku tests)

Create runners for other ways to run
(for example, debug, coverage, profiling)

Sometimes only need the "backend"
(Intelli) platform provides test result and debug Ul)

Creating a standalone IDE
based upon that plugin

Intelli) platform IDE

N
N

a bunch of plugins

Get intellij-community

Clone the git repository

(it's big; this may take a while)

Check out a release

(so you have a stable version to build against)

Follow the README to build it

(there's more to download, and some setup in IntelliJ)

Create a new module

In the 1ntellij-community project
Just a normal Java module

For example, my-test-ide

Give it some dependencies

For an empty shell (it starts up but
offers nothing at all), add at least:

Name: my-test-ide
Sources Paths Dependencies

Module SDK: | M= Project SDK (1.8 - MNew... Edik

Export Scope 4+
P= 1.8 (java version "1.8.0_101")

s intellij.platform.lang Compile -
s intellij.platform.lang.impl Compile~ -
2 intellij.platFform.main Compile -
= intellij.platform.images Compiler
s intellij.xml.dom.impl Compile =

s intellij.platform.smRunner Compile

Add a resources directory

v my-test-ide
v EEresources
¥ Ll idea

See the similarly
¥ SR METAARE named images from

PyCharm or Intelli)
/ Community to find
the required sizes.

SIc

MyIdeCorePlugin.xml

(to an IDE what plugin.xml is to a plugin)

<idea-plugin xmlns:xi="http://www.w3.0rg/2001/XInclude”>
<xi:include href="/META-INF/PlatformLangPlugin.xml"
xpointer="xpointer(/idea-plugin/*)"/>
<xi:include href="/META-INF/XmlPlugin.xml"
xpointer="xpointer(/idea-plugin/*)"/>
<xi:include href="/META-INF/JsonPlugin.xml"

xpointer="xpointer(/idea-plugin/*)"/>
<xi:include href="/META-INF/ImagesPlugin.xml"
xpointer="xpointer(/idea-plugin/*)"/>
<xi:include href="/META-INF/SpellCheckerPlugin.xml"
xpointer="xpointer(/idea-plugin/*)"/>
</idea-plugin>

MyIdeCoreApplicationInfo.xml

Specifies the IDE name, version, icon,
images, support and updates URLs, etc.

For inspiration see:

IdeaApplicationInfo.xml
PyCharmCoreApplicationInfo.xml

Make a run configuration

Mame: |MyIDE Share Allow parallel r,

Configuration Code Coverage Logs

Main class: com.intellij.idea.Main

VM options: -Didea.platform.prefix=MyIdeCore -Didea.paths.selec
Program argumenks:

Working directory: Jhome/jnthn/edumentfintelli-community/bin -
Environment variables:

Redirect input from:

Use classpath of module: | g my-test-ide hd

Include dependencies with "Provided" scope

JRE: IDEA jdk d

Make a run configuration

Mame: MyIDE Share Allow parallel
Configuration Code Coverage Logs
Main class: com.intellij.idea.Main
VM options: -Didea.platforg.prefix=MyldeCore -Didea.paths.selec

Program arguments:

WELIEEIERE -Didea.platform.prefix=MyIdeCore
T e -Didea.paths.selector=MyIde

e -Didea.is.internal=true
Redirect inp

-eda
e - Xmx192m _

Include dependencies with "Provided” scope

JRE: IDEA jdk d

That's it!

.

Welcome to My IDE

K Check out from Version Control =

i Events v @ Configure~ GCetHelp~

And then...

Add the plugins you want

(as module dependencies and in the core plugin XML)

Add actions to go on the start screen
(search for WelcomeScreen.Platform.NewProject)

Does one need to patch the
Intelli) platform code itself?

In our experience, only very rarely

Sometimes requires effort to achieve
what is desired without patching it

(but it's worth it for easier updating to new platform versions)

Releasing the IDE

on various platforms

Our mistake:

Our mistake:

We have our standalone IDE
running from within IntelliJ! Now

we're almost ready to ship this!

HEA

There was still quite
some work to go!

It's possible to reuse the build
system that produces the
Intelli) and PyCharm
Community release artifacts

(However, it's not especially easy to
figure out how - or at least, it's not if
unfamiliar with ant, gradle, and groovy)

What we did

Make a copy of the build and
source of PyCharm Community

Rip out everything we didn't need

Studied what was left

We wanted to support...

9.

- 4
a 8

Linux Windows MacOS

Linux ©

The build process produces a .tar.gz with
a bundled JetBrains JRE

It Just Works!

If Linux is all you need to ship on,
consider yourself fortunate

Windows

The build process produces a Windows
installer (needs a few assets making)

It can even produce it on Linux. Nice!

But...the comma. exe that got installed
was reported as invalid!

3 person days
+

a lot of head scratching
+

a lot of grumbling
+

a lot of wrong guesses

It was all because...

It was all because...

...our icon file had the
wrong bit depth!

|
........ i o
WS N

R S N TR
% 3 o,

N o
5 . b k3
oy ek,
5 g &
") J

. . P y
" > N
8 " b 3 5 L, N - :
C 3 3 .4 - s £ - = e g .
0 e] = Py B a3 . J . 7 - % e &
) y . 5 3, o, g AT 't A . b, h W, TR 3 b,
BN e 7 A 4 by - ! -yt e - % e, A 3 N
R g Swhy L9 = . X .. % A = ! - b
e W N > b A : L s AT,) Py
A, 2 o e LA i = b N v}y R ke ! 3 5 5 & I
By & q : i . o 3 o ey 3 e n, % e s s -
. '3 L, & - . g A, [gy 5 i A ._ A
] o i 4 - - b Wk oy 3 e i, “ -y g q LS 7%
; i A R 4 3 N e Ak, -+ Wy i o .. o 4 T A !
Bl . & iy, B i, A e . % J 3 By, “h
N .) bR N 1 N h,) M, g 55 ” :
LY b ..) . -, e 3 . .
| e F B x 3 ;. !
Ny ", R : - 3 o
i ™ & B - N~ Ve, ; ., Y i -
: h " P o e ¥ " o o 3 AR N, X 5 3 .
N A s 4 b R 5 3 N o L r i o
" i & gk 4 3 . o \ . N . =
S & 5 R S S T By X s F N v) i =
] 4 -

MacOS

If one doesn't want a DMG, it's OK

Alas, one does really want one, especially
since using an unpatched JRE to run the
IntelliJ platform on MacOS ends badly

So, how to do the DMG?

Making a DMG needs...

A Mac

Joining the Apple developer program

(in order to sign it; Catalina is even more picky about this)

Patching stuff until it works
(a story featuring FTP, SSH, and a lot of terrible hacks)

Finally

We also built a small web application
that exposes endpoints:

JFor receiving exception reports
JFor serving an updates.xml
JdWith some end user documentation

Closing thoughts

The IntelliJ platform has served as a
solid base for building an IDE for Raku

Building a good custom language
support is a lot of work

But not having to build the generic IDE
stuff is what made Comma feasible

Questions?

@ jonathan@edument.cz
W edument.cz / jnthn.net
¥ jnthnwrthngtn

") jnthn

