
The Raku language
in 2 minutes

Motivation for building an IDE
using the IntelliJ platform

Making a language support plugin
on the IntelliJ platform

Creating a standalone IDE
based upon that plugin

Releasing the IDE
on various platforms

There's days worth of things to say
on these topics, but we have an

hour, so...

I will offer an overview of what needs doing to
build support for a new language and/or create

an IDE on the IntelliJ platform

Along the way, some lessons we learned the
hard way, so you can make different mistakes

The Raku language
in 2 minutes

Multi-paradigm

Because different problems are
best solved with different

approaches

Feature-rich

Because complexity not tackled in
the language pops up in all of the

programs written using it

Innovative, but practical

 Built-in grammars for parsing
 Grapheme-level Unicode strings
 await without the async ceremony
 First-class syntax for working safely

with reactive streams
 Programmable compile time, to do

dynamic stuff, but retain more safety

Motivation for building
an IDE

using the IntelliJ platform

IDE
≈

Curated Development
Experience

Tools for particular
development scenarios

+
Well thought out defaults

Comma is an IDE for developing
libraries and applications in Raku

Free community version

Subscription model for complete version

We also ship it as an IntelliJ platform plugin

Syntax highlighting

Authoring support

Navigation

Refactoring

Inline documentation

Running tests

Test coverage

Debugging

Profiling

Concurrency visualization

Why might you build an IDE?

You might make an IDE because...

You want an IDE focused on a particular
programming language

You want to distribute an IDE with a selected
set of plugins aimed at a particular use case

You want to provided a branded tool

But building an IDE from scratch
would be a really

huge
amount of work!

We decided to build Comma on
the IntelliJ platform because it...

 Offers a mature, cross-platform, framework

 Provides numerous "generic" IDE features
(quality editor, file tree, VCS integration, UI)

 Is known to support many languages, so it
should be flexible enough

 Is open source, but still permits commercial
products built on it

Making a language
support plugin

on the IntelliJ platform

I'm a compiler hacker, so...

I

💔
strings and bytes

I

❤
trees and graphs

Source code
=

text
⇒

almost impossible to do
anything interesting with

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator
■ Numeric literal

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator
■ Numeric literal
■ Opening brace

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator
■ Numeric literal
■ Opening brace

■ Function name

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator
■ Numeric literal
■ Opening brace

■ Function name
■ String literal

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator
■ Numeric literal
■ Opening brace

■ Function name
■ String literal
■ Semicolon

for ^10_000 {
 say "Strings are boring";
}

Tokenization
(aka. lexical analysis, lexing, scanning)

■ Keyword
■ Operator
■ Numeric literal
■ Opening brace

■ Function name
■ String literal
■ Semicolon
■ Closing brace

Using tokens, we can do some
mildly interesting stuff, like...

 Syntax highlighting

 Brace and quote matching

 Brace and quote insertion

Using tokens, we can do some
mildly interesting stuff, like...

 Syntax highlighting

 Brace and quote matching

 Brace and quote insertion

Once we have a tokenizer, we can easily wire
these up on the IntelliJ platform.

Using tokens, we can do some
mildly interesting stuff, like...

 Syntax highlighting

 Brace and quote matching

 Brace and quote insertion

Once we have a tokenizer, we can easily wire
these up on the IntelliJ platform.

General principle: we
provide the "backend",
and the IntelliJ platform

provides the UI

Tokens
=

flat stream of stuff
⇒

no idea if it's valid syntax, let
alone what the code means

for ^10_000 {
 say "Strings are boring";
}

Parsing

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

range upto operator (^)

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

range upto operator (^)

integer literal 10000

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

range upto operator (^)

integer literal 10000

block

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

range upto operator (^)

integer literal 10000

block

function calll

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

range upto operator (^)

integer literal 10000

block

function calll

function lookup
say

for ^10_000 {
 say "Strings are boring";
}

Parsing

for loop statement

range upto operator (^)

integer literal 10000

block

function calll

function lookup
say

string literal
"Strings are boring"

Writing tokenizers and
parsers is "interesting"

(Like most things, one gets much better

at it with practice and experience)

Raku has "grammars" built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

Raku has "grammars" -built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

Can fairly easily express
syntax that is

challenging with
traditional approaches

Raku has "grammars" -built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

Can fairly easily express
syntax that is

challenging with
traditional approaches

Raku has "grammars" -built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

But the IntelliJ platform
really expects there to
be a tokenizer and a

parser...

Raku has "grammars" -built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

But the IntelliJ platform
really expects there to
be a tokenizer and a

parser...

😱

Raku has "grammars" -built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

...and it expects them
to be written in

something that runs on
the JVM!

Raku has "grammars" -built right
into the language - and uses them

to define its own syntax!

They are "scannerless" - that is to
say, we don't write a separate

tokenizer by ourselves

...and it expects them
to be written in

something that runs on
the JVM!

🙀

Fine. I'll write a compiler.

Fine. I'll write a compiler.

Subset of Raku grammars with
token and parse node annotations

Tokenizer and parser matching the
interfaces of the IntelliJ platform

For more conventional battles...

Check out Grammar-Kit by JetBrains

Grammar-Kit

 Generates a JFlex tokenizer, a Java parser,
and PSI elements (more on those soon)

 Grammar development support in the IDE

 Features especially for handling parsing of
incomplete code / error recovery

 Live preview (but for most interesting
languages, you'll have to maintain the
tokenizer by hand, then can't use preview)

It's good to test parsers, but...

The typical way to write parser tests on the
IntelliJ platform checks that they produce the

exact expected structure

Thus even small tweaks break the tests

Have parser tests, but start out with "does it
parse at all", and commit to structure later

PSI?

Program
Structure
Interface

The way the IntelliJ
platform models

source code

(Or anything that we might think of that way,
such as code compiled in a JAR file)

Each program element is
represented by a PsiElement

for loop statement

range upto operator (^)

integer literal 10000

block

function calll

function lookup
say

Typically for each program
element we have an interface
that extends PsiElement

This is then implemented by a
class that extends some base
class from the IntelliJ platform

Typically for each program
element we have an interface
that extends PsiElement

This is then implemented by a
class that extends one a base
class from the IntelliJ platform

Why bother with the
interface? I ain't no

abstraction aficionado...

Typically for each program
element we have an interface
that extends PsiElement

This is then implemented by a
class that extends one a base
class from the IntelliJ platform

We can have alternate
implementations not backed

by source code (such as
library metadata)...

Typically for each program
element we have an interface
that extends PsiElement

This is then implemented by a
class that extends one a base
class from the IntelliJ platform

...giving us a uniform
interface over source and
external dependencies,

which makes things easier!

In Comma we had a script to generate
empty PSI interfaces and classes, and

then added code to them

Grammar-Kit generates them for you -
but then you need to put logic in mixin

classes and create other interfaces, so it's
not so much of a win in the end

Based around the tree of PSI
elements, we can implement...

 Code folding

 Code formatting

 Various localized code analyses

 Smart-enter, move statement, etc.

But we're still missing something big...

sub longest(Str $a, Str $b) {
 $a.chars > $b.chars ?? $a !! $b
}

say longest "year", "month";

sub longest(Str $a, Str $b) {
 $a.chars > $b.chars ?? $a !! $b
}

say longest "year", "month";

We want to link variable usages
to their declarations....

...and sub calls to the subroutine
being called...

sub longest(Str $a, Str $b) {
 $a.chars > $b.chars ?? $a !! $b
}

say longest "year", "month";

...and we'd like to
provide auto-complete

for all of these too

PSI References

Any PSI element can implement the
getReference method

The reference object is used to resolve

to a precise target, as well as to
getVariants for auto-complete

How?

By implementing the lookup rules of the
programming language in question

My advice: research how compilers or
interpreters of the language do it, and

structure your solution similarly

Once we have PSI references, we
can do far more...

 Auto-complete, parameter info

 Undeclared variable annotations etc.

 Find usages

 Rename refactor

But in a huge project, is this efficient?

Once we have PSI references, we
can do far more...

 Auto-complete, parameter info

 Undeclared variable annotations etc.

 Find usages

 Rename refactor

But in a huge project, is this efficient?

PSI trees use quite a
lot of memory...

Once we have PSI references, we
can do far more...

 Auto-complete, parameter info

 Undeclared variable annotations etc.

 Find usages

 Rename refactor

But in a huge project, is this efficient?

...and tokenizing and
parsing ain't cheap.

Stub PSI

Store a subset of the information from
the PSI tree in lightweight objects

Typically, just key info about declarations

We code up serialization/deserialization,

and the platform saves them to disk

class Point

method x

attribute $!x

method is-at-origin

&& operator

== operator

File Point.rakumod

== operator

attribute $!x literal 0 attribute $!x literal 0

class Point

method x

attribute $!x

method is-at-origin

&& operator

== operator

File Point.rakumod

== operator

attribute $!x literal 0 attribute $!x literal 0

■ Has stub PSI

Stub PSI indexes

Can put stub PSI elements into indexes,
under keys

Really useful for implementing the

"Navigate To..." feature, and potentially
reference resolution in some languages

Running stuff

Create run configuration types
(for example, Raku application, Raku tests)

Create runners for other ways to run

(for example, debug, coverage, profiling)

Sometimes only need the "backend"

(IntelliJ platform provides test result and debug UI)

Creating a standalone IDE
based upon that plugin

IntelliJ platform IDE
≈

a bunch of plugins

Get intellij-community

Clone the git repository
(it's big; this may take a while)

Check out a release

(so you have a stable version to build against)

Follow the README to build it

(there's more to download, and some setup in IntelliJ)

Create a new module

In the intellij-community project

Just a normal Java module

For example, my-test-ide

Give it some dependencies

For an empty shell (it starts up but
offers nothing at all), add at least:

Add a resources directory

See the similarly
named images from
PyCharm or IntelliJ
Community to find
the required sizes.

MyIdeCorePlugin.xml
(to an IDE what plugin.xml is to a plugin)

<idea-plugin xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="/META-INF/PlatformLangPlugin.xml"
 xpointer="xpointer(/idea-plugin/*)"/>
 <xi:include href="/META-INF/XmlPlugin.xml"
 xpointer="xpointer(/idea-plugin/*)"/>
 <xi:include href="/META-INF/JsonPlugin.xml"
 xpointer="xpointer(/idea-plugin/*)"/>
 <xi:include href="/META-INF/ImagesPlugin.xml"
 xpointer="xpointer(/idea-plugin/*)"/>
 <xi:include href="/META-INF/SpellCheckerPlugin.xml"
 xpointer="xpointer(/idea-plugin/*)"/>
</idea-plugin>

MyIdeCoreApplicationInfo.xml

Specifies the IDE name, version, icon,
images, support and updates URLs, etc.

For inspiration see:

IdeaApplicationInfo.xml

PyCharmCoreApplicationInfo.xml

Make a run configuration

Make a run configuration

-Didea.platform.prefix=MyIdeCore
-Didea.paths.selector=MyIde
-Didea.is.internal=true
-ea
-Xmx192m

That's it!

And then...

Add the plugins you want
(as module dependencies and in the core plugin XML)

Add actions to go on the start screen

(search for WelcomeScreen.Platform.NewProject)

Does one need to patch the
IntelliJ platform code itself?

In our experience, only very rarely

Sometimes requires effort to achieve

what is desired without patching it
(but it's worth it for easier updating to new platform versions)

Releasing the IDE
on various platforms

Our mistake:

Our mistake:

We have our standalone IDE
running from within IntelliJ! Now
we're almost ready to ship this!

Reality:

There was still quite
some work to go!

It's possible to reuse the build
system that produces the

IntelliJ and PyCharm
Community release artifacts

(However, it's not especially easy to
figure out how - or at least, it's not if

unfamiliar with ant, gradle, and groovy)

What we did

Make a copy of the build and
source of PyCharm Community

Rip out everything we didn't need

Studied what was left

We wanted to support...

Linux Windows MacOS

Linux 

The build process produces a .tar.gz with
a bundled JetBrains JRE

It Just Works!

If Linux is all you need to ship on,

consider yourself fortunate

Windows 😲

The build process produces a Windows
installer (needs a few assets making)

It can even produce it on Linux. Nice!

But...the comma.exe that got installed

was reported as invalid!

3 person days
+

a lot of head scratching
+

a lot of grumbling
+

a lot of wrong guesses

It was all because...

It was all because...

...our icon file had the
wrong bit depth!

MacOS 😱

If one doesn't want a DMG, it's OK

Alas, one does really want one, especially
since using an unpatched JRE to run the
IntelliJ platform on MacOS ends badly

So, how to do the DMG?

Making a DMG needs...

A Mac

Joining the Apple developer program
(in order to sign it; Catalina is even more picky about this)

Patching stuff until it works

(a story featuring FTP, SSH, and a lot of terrible hacks)

Finally

We also built a small web application
that exposes endpoints:

For receiving exception reports
For serving an updates.xml
With some end user documentation

Closing thoughts

The IntelliJ platform has served as a
solid base for building an IDE for Raku

Building a good custom language

support is a lot of work

But not having to build the generic IDE
stuff is what made Comma feasible

Questions?

@ jonathan@edument.cz

W edument.cz / jnthn.net

jnthnwrthngtn

jnthn

