
Reflections on a decade
 of MoarVM

A runtime for the Raku programming language

Jonathan Worthington
Edument

MoarVM is...

A virtual machine

Built for the Raku programming
language (née Perl 6)

Developed by an open source

community

I am...

Co-founder and architect of MoarVM
Architect of the Rakudo compiler

Raku MOP & concurrency co-designer

Working at Edument, primarily on
developer tooling projects

(previously was mostly teaching)

Time flies

Nearly 10 years of development!

I've learned a lot about VMs.
Still got a lot left to learn.

The origins
of the MoarVM project

The early days of MoarVM
as a simple bytecode interpreter

How MoarVM advanced
to incorporate many of the VM "tricks of the trade"

The growing pains
that we experienced as MoarVM advanced

A new generalized dispatch mechanism
that's enabling us to do more with less

The origins
of the MoarVM project

How I got involved

Ran a small web development company
in my teens, used Perl a lot

At university, really enjoyed the courses

on compilers and languages

Wanted to explore that area and give
something back to the Perl community

Perl 6

Yes, I've already heard all the jokes

Yes, it was eventually released

Diverged from Perl 5 in many ways

Perl 6

Yes, I've already heard all the jokes

Yes, it was eventually released

Diverged from Perl 5 in many ways

It darn well
needed to!

Perl 6

Yes, I've already heard all the jokes

Yes, it was eventually released

Diverged from Perl 5 in many ways

but

It darn well
needed to!

Is this thing
even Perl?

Raku

Eventually renamed to Raku

I'll refer to the language as Raku
throughout this talk

What makes Raku
interesting* to

implement?

* As in "may you live in interesting times"

Dynamic language, but...

There are types, and they must be
enforced runtime at latest

Naive implementation?
Loads of runtime spent doing type checks!

my class IPGNode {
 has Function $.function is required;
 has ValueStateGraph::LambdaNode $.lambda is rw;
 has IPGNode @.calls;
 method add-callee(IPGNode $node --> Nil) {
 @!calls.push($node);
 }
}

Operators are multis

Multiple dispatch very widely used,
including for nearly ever operator

=

Not much ad-hoc polymorphism...
...but demands that multiple dispatch is fast!

say $m * $x + $c;

say infix:<+>(infix:<*>($m, $x), $c);

Arbitrary precision

The Int type is arbitrary precision
(also native int which is not)

4.2 is a Rat (rational number), not

floating point

*time at *time

EVAL (compile time at runtime)
but also

BEGIN (runtime at compile time)

Meta-programming

Meta-classes not just for introspection

Called by the compiler to construct types,
and at runtime to find methods, do type

checks, etc.

Can subclass built-in metaclasses or
define completely new ones

Grammars

Raku has a new "regex" syntax...that
scales up to decidedly irregular things

grammar JSON::Tiny::Grammar {
 token TOP { \s* <value> \s* }
 rule object { '{' ~ '}' <pairlist> }
 rule pairlist { <pair> * % \, }
 rule pair { <string> ':' <value> }
 rule array { '[' ~ ']' <arraylist> }
 rule arraylist { <value> * % [\,] }
 ...
}

Raku eats itself

The Raku Language syntax is defined (and
parsed) using...a Raku grammar!

Can mix into the grammar to tweak the

language syntax

multi postfix:<!>(Int $n) {
 [*] 1..$n
}

Which means...

The compiler is just another Raku
program running atop of the VM

The Raku standard library is written in

Raku, with a means to call VM primitives

Sounds idyllic...

...but, well...

...it's challenging...

...to even start to compete with a "classic"
dynamic language implementation (let alone

a modern one) when you're writing your...

Basic operators
Object model

Compiler

...in something you're still trying to run fast!

But back to me

A younger, naiver, me had no idea about
the challenges ahead

Started contributing to the Rakudo

compiler

But was also curious about the Parrot
virtual machine

Parrot

"One bytecode to rule them all"

Aimed to be a VM for all dynlangs

Parrot didn't make it, but the idea
survived, and was (independently)

later realized in GraalVM

Parrot frustrations
(only really clear to me in hindsight)

We're an independent project from
Perl 6 and don't want to put all our

eggs in that basket...

Parrot frustrations
(only really clear to me in hindsight)

We're an independent project from
Perl 6 and don't want to put all our

eggs in that basket...

We're Parrot's main customer, it
doesn't even run our language well

yet (slow, struggling with threading...)

What happened?

What happened?

Youthful arrogance happened!

"What if I implemented a VM focused
entirely on the Raku language?"

The early days of
MoarVM

as a simple bytecode
interpreter

Why the name?

I'd previously been working on the Raku
Meta-Object Protocol

We'd build a runtime to host that

"Metamodel On A Runtime VM"

Actually, uhhh....

We just liked silly
memes

https://seekingalpha.com/article/4061225-moar-cheezburgers-plz

The rough plan

Start out as a simple interpreter

Try to make different mistakes to Parrot

Add the trickier things (type
specialization, JIT, etc.) later

Raku Architecture
(Prior to MoarVM)

Parrot VM

NQP
Bootstrapped subset of Raku (thus written in NQP itself)

Rakudo

Compiler (NQP) MOP (NQP) Library (Raku)

Raku Architecture
(Prior to MoarVM)

Parrot VM

NQP
Bootstrapped subset of Raku (thus written in NQP itself)

Rakudo

Compiler (NQP) MOP (NQP) Library (Raku)

Write a bytecode generator for
MoarVM, then get NQP to compile

itself for MoarVM

A language for MoarVM

Needed to pick a systems language

C was the least imperfect choice

I knew it, but more importantly, so did
many folks in the community around the

language - more so than other options

The interpreter

Chose register-based over stack-based
(in common with Parrot)

Computed goto where available,

fallback to a giant switch statement

Why register-based?

No stack pointer to maintain

Registers have types (native int/num/str
or object), so easier GC marking

SSA form would have a straightforward
relationship with the original bytecode

Register VM downsides

Probably bigger bytecode

Invocation records have to zero out
object registers to not confuse the GC,

and this becomes rather costly
(and mitigating it gets back to the same

complexity as having stack maps)

GC

2 generations

Nursery is per-thread semispace copying

Old generation shared and non-moving

Parallel (but not concurrent) GC

The GC has invariants

Must know the locations of all
collectable objects (for copying)

Assignments into collectables require

write barriers (for generational)

Need a lot of discipline to uphold them

Needs discipline
=

Will be done wrong

Needs discipline
=

Will be done wrong
Again and again and again and again and
again and again and again and again and
again and again and again and again and

again and again and again and again

Coping with C and a GC

Run with tiny nursery (makes broken invariants far
more likely to cause failures)

Compile with "not in fromspace" assertions on

every register access and assignment

Allocate new fromspace every time, so bad reads
will trigger ASAN/valgrind

GCC plugin doing static analysis

Object system

Type = Meta-object + Representation

Meta-object

Implemented in HLL

Dispatch semantics

Type membership

Introspection

Representation

Implemented in the VM

Memory layout

Involved with GC

Serialization/deserialization

Meta-object

Implemented in HLL

Dispatch semantics

Type membership

Introspection

Representation

Implemented in the VM

Memory layout

Involved with GC

Serialization/deserialization

With the exception of one
provided by the VM to

"bootstrap" the rest
(supports fields and

methods, but no subtyping)

Object system

Type = Meta-object + Representation

Meta-object

Written in HLL

Dispatch semantics

Type membership

Introspection

Representation

Implemented in the VM

Memory layout

Involved with GC

Serialization/deserialization

Dynamic array
Fixed array
Record type
CStruct (FFI)
Continuation

...

Object system

Type = Meta-object + Representation

In a simple bytecode
interpreter world....

Interpreting bytecode is slow

Making calls is slow
but

Things written in C are fast
therefore

Find ways to do hot path things in C

Loads of complex ops
and APIs

Meta-objects could publish a flat

method lookup table, used for quick
lookups of methods

Loads of complex ops
and APIs

A tree-based multi dispatch lookup

cache (nominal types only) to speed up
multiple dispatches

Loads of complex ops
and APIs

Raku has first-class l-values, but

assignment is hot, so the assignment
process was written in C

C a la CPS

Many of these complex operations
sometimes needed to call into bytecode

But nested runloops are bad
(they cause a continuation barrier)

Thus have to write them CPS-style

How MoarVM
advanced

to incorporate many of the
VM "tricks of the trade"

Scarce resources

Early bet: type specialization, inlining,
etc. would offer greater speedups
than compilation to machine code

Compiled to machine code

!=
It'll run fast

Specializer ops

Interpreter opcodes that are
disallowed in input bytecode, but

may be produced internally

Can do things that are only safe
because analyses proved them so

Getting started

Keep call counts of functions, and
once a limit is reached, try to produce

a specialization

Keyed on callsite shape (arity, named
argument names) and the types of

any object arguments

Analysis

Form CFG from bytecode

Turn it into SSA

Facts (known type, known value) kept
per SSA variable

Optimizations

Delete arity checks
Delete proven type checks

Turn method lookups to constants
Dead branch elimination

Dead instruction elimination
Lower attribute access to pointer ops

Specialize some complex ops

Then crash and burn...

Raku has mixins

Types of objects can change at a
distance

The type a specialization was keyed
on could change  opts break stuff

Deoptimization

Every function call is a potential
deoptimization point

Keep a table mapping optimized to

unoptimized return addresses

On a mixin, walk stack and rewrite
them to point to unoptimized code

Deoptimization

Every function call is a potential
deoptimization point

Keep a table mapping optimized to

unoptimized return addresses

On a mixin, walk stack and rewrite
them to point to unoptimized code

But this changes
everything!

Deoptimization

Every function call is a potential
deoptimization point

Keep a table mapping optimized to

unoptimized return addresses

On a mixin, walk stack and rewrite
them to point to unoptimized code

Can do it for any
program point

Statistics will do

Add logging of types of...
Non-local variable lookups

Attribute lookups
Return values of function calls

If a stable type is observed most of

the time, insert a guard
 can assume that type beyond it

Specialization linking

Applies when we call one specialized
function from another

May already "know" that we have the

input types for a specialization

Directly call the specialization
 eliminates some guards

Inlining

For small callees where we know the
specialization, can inline it

MoarVM does multi-level inlining
(Related headache: this means for deopt

 we need multi-level uninlining too!)

More chances to eliminate guards

OSR

Some programs have long-running
hot loops (micro-benchmarks!)

I cheated: compiler emits osrpoint
ops at the end of a loop that trigger
the production of a specialization

Really just deopt in reverse

Machine code

Somebody did eventually implement
compilation to machine code (x64)

A significant win for tight math

involving native types

Smaller win elsewhere
 seems to validate our strategy

What helps most?

0

1

2

3

4

5

6

7

No Optimization

Specialization

Plus Inlining

Plus Machine Code

The growing pains
that we experienced as

MoarVM advanced

Complexity? Bugs!

All too easy to be fast and wrong

When optimization or deoptimization
bugs happen, need ways to debug them

Also want to be proactive (find them

before language users do)

Triggering bugs

A special NODELAY mode, which
optimizes all code, not just hot code

Exercises the optimizer a lot

Also, bad type statistics mean terrible
optimization choices, so it exercises

deoptimization a lot too!

Hunting bugs

Lots of logging
Dump SSA before and after optimization
Analyses/transforms can add comments

Dump deoptimizations

Specialization bisection

Environment variable to limit number of
specializations produced  can quickly find which

specialization breaks the program

Optimization takes time

Initially, interrupted interpreting code to
produce specializations

Poor use of multi-core hardware

Also fun: data parallel code tended to

have every thread trying to produce the
same set of specializations

Specializer thread
Interpreter threads running unspecialized code log calls,
returns, and types into a buffer...

...and, once it's full, send it to the specializer thread.

The specializer thread replays these, simulating the stack, and
builds up statistics, which are used to plan specializations

infix:<+>

totals

MAIN

Type tuple: (Int, Int)
 214 calls

The Good
Very much a measurable improvement

Puts another core to work

The Bad

New source of non-determinism
BLOCKING mode to recover bisection

The ugly

Some programs exhibit significant performance
differences from run to run

[Poly|mega]morphism

Improvements in micro-benchmarks
don't map directly to real programs

Initially, set an upper limit on number of

specializations, to cope with the
"rare megamorphic cases"

Turns out they ain't so rare...

class Array {
 multi method ASSIGN-POS(Int $index, Any $value) {
 ...
 }
 ...
}

Dozens of different
types in any non-tiny

program

Stable type

Mono, poly, mega

Observed type specialization
(From an exact observed type tuple)

Derived type specialization
(Only the stable types in the tuple)

Certain specialization

(From an observed callsite but any types)

Broken assumptions

Remember this slide?

In a simple bytecode
interpreter world...

Interpreting bytecode is slow

Making calls is slow
but

Things written in C are fast
therefore

Find ways to do hot path things in C

Broken assumptions

Remember this slide?

In a simple bytecode
interpreter our new world...

Interpreting bytecode is slow

Making calls is slow
but

Things written in C are fast
therefore

Find ways to do hot path things in C

Broken assumptions

Remember this slide?

In a simple bytecode
interpreter our new world....

Interpreting bytecode is slow We compile to machine code

Making calls is slow
but

Things written in C are fast
therefore

Find ways to do hot path things in C

Broken assumptions

Remember this slide?

In a simple bytecode
interpreter our new world....

Interpreting bytecode is slow We compile to machine code

Making calls is slow And perform inlining
but

Things written in C are fast
therefore

Find ways to do hot path things in C

Broken assumptions

Remember this slide?

In a simple bytecode
interpreter our new world....

Interpreting bytecode is slow We compile to machine code

Making calls is slow And perform inlining
but

Things written in C are fast opaque to the optimizer
therefore

Find ways to do hot path things in C

Broken assumptions

Remember this slide?

In a simple bytecode
interpreter our new world....

Interpreting bytecode is slow We compile to machine code

Making calls is slow And perform inlining
but

Things written in C are fast opaque to the optimizer
therefore

Find ways to do Stop doing hot path things in C

Example: assignment

Type checks done from C?
Can't eliminate them 

Assignment triggers a call?

Can't specialization link or inline it 

Write into container done in C?

Escape analyzer can't see it 

Speedup Speed hump

Complex operations to avoid interpreter
and call overhead are either...

Opaque to the optimizer

(And so opportunities to optimize are lost)

Abstractly interpreted in the optimizer
(Causing duplication, complexity, and thus bugs)

Performance cliffs

Too many language semantics to bake
special cases for them all into the VM

Optimizer then tends to make the

performance cliffs even higher

A new generalized
dispatch mechanism
that's enabling us to do more

with less

It's all about dispatch

If something is a dispatch...

It's all about dispatch

If something is a dispatch...

Any operation where the
code we decide to run is
determined by the types

or values of the arguments

It's all about dispatch

If something is a dispatch...

...and the VM doesn't know it's one...

...it's going to be slow...

...and the optimizer won't help much

A solved problem?

Take the types or values of a set of
arguments, transform the arguments,

invoke some code with them...

...sounds very much like the JVM's
invokedynamic?

Take it all the way

The VM and the compilers targeting it
are under our control

So we didn't just add a new dispatch

mechanism to MoarVM

We were also able to remove almost a
dozen ad-hoc dispatch-y things

One opcode

result = dispatch 'name', callsite, ...

One opcode

result = dispatch 'name', callsite, ...

The name of a dispatcher,
looked up in a registry

One opcode

result = dispatch 'name', callsite, ...

The argument shape (count of
positional arguments, names

of named arguments)

One opcode

result = dispatch 'name', callsite, ...

The registers holding values
for each of the arguments

Dispatch terminals

Every dispatch bottoms out in one of:

boot-constant (a literal value)

boot-value (a read argument, read field, etc.)

boot-code-constant (constant bytecode handle)

boot-code (a read bytecode handle)

boot-syscall (a VM-provided primitive)

boot-foreign-code (a call using the FFI)

Dispatch terminals

Every dispatch bottoms out in one of:

boot-constant (a literal value)

boot-value (a read argument, read field, etc.)

boot-code-constant (constant bytecode handle)

boot-code (a read bytecode handle)

boot-syscall (a VM-provided primitive)

boot-foreign-code (a call using the FFI)

dispatcher-register call
to register a userspace-defined

dispatcher

Userspace dispatchers

Invoked with an argument capture
(The Raku term for an argument tuple, except it

can have positional and named arguments)

Can add guards and transform capture

Must finish by delegating to another
dispatcher (user-defined or terminal)

Userspace dispatchers

Invoked with an argument capture
(The Raku term for an argument tuple, except it

can have positional and named arguments)

Can add guards and transform capture

Must finish by delegating to another
dispatcher (user-defined or terminal)

raku-meth-call 
raku-meth-call-resolved 

raku-multi 
raku-multi-core 

raku-invoke 
boot-code-constant

Dispatch program

Set of ops derived from the guards,
capture transformations, and terminal

Delegations and captures are erased,

guards are de-duplicated

Program installed at the callsite
(Polymorphic sites may have many programs)

Optimization

Specializer translates dispatch programs
in hot code into specializer ops

No guard if property already proven

(inserted ones may later be dropped too)

Implementation is very regular

(no knowledge of method cache, multi cache, etc.)

Not quite enough

What's described so far is mostly a remix
of ideas found elsewhere

However, in Raku, dispatch can be a

process over time...

class Operator {
 method emit($left, $right) {
 ...
 }
}
class Comparison is Operator {
 has Bool $.negated;
 method emit($left, $right) {
 $!negated
 ?? self.negated(callsame())
 !! callsame()
 }
}

class Operator {
 method emit($left, $right) {
 ...
 }
}
class Comparison is Operator {
 has Bool $.negated;
 method emit($left, $right) {
 $!negated
 ?? self.negated(callsame())
 !! callsame()
 }
}

Call the next candidate

class Operator {
 method emit($left, $right) {
 ...
 }
}
class Comparison is Operator {
 has Bool $.negated;
 method emit($left, $right) {
 $!negated
 ?? self.negated(callsame())
 !! callsame()
 }
}

Call the next candidate

Next wrapper, or next most
general multi, or next method

in the MRO

multi fac(Int $n where $n <= 1) {
 1
}
multi fac(Int $n) {
 $n * fac($n - 1)
}

multi fac(Int $n where $n <= 1) {
 1
}
multi fac(Int $n) {
 $n * fac($n - 1)
}

Invoke this candidate, if its
where clauses fail, try calling

the next most general one

The problem

Dispatches may need to be continued
(and we don't always know up front)

We'll need to recover the original args

Where we go next may be late-bound,

and lastcall/nextcallee even make
the whole thing stateful!

Resumable dispatchers

A user-space dispatcher can:

Provide a resume callback
For if the dispatch it started should be resumed

Specify resume initialization arguments
Derived from the initial capture; carries either no or very

low dispatch-time cost

The resume callback

Can do all the dispatch callback can, and:

Recover the resume init args
As a capture, although it's erased in the dispatch program

Read/write one object reference of state

Most often used to hold a linked list of candidates, for
example, of all matching methods in the MRO

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

Record phase

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

Method call dispatcher
indicates (C, 'm', 42) are

the resume init args

Record phase

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

Triggers resume callback, that:
1. Obtains resume init args

2. Guards on them
3. Builds linked list of MRO

4. Stores 3rd node onward as
dispatch state

5. Invokes 2nd node

Record phase

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

Record phase Triggers resume callback, that:
1. Obtains dispatch state, D

2. Guards on D.meth
3. Updates dispatch state to D.next

4. Obtains resume init args
5. Invokes D.meth with the args

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

Guards on invocant type,
resume init args are just

data, so no cost

Run phase

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

1. Guards that the next resumption
is the expected one

2. Guards on callsite shape
3. Reads init args, guard on

invocant type and method name
4. Runs the target method

Run phase

class GP {
 method m($x) { 'gp-' ~ $x }
}

class P is GP {
 method m($x) { 'p-' ~ callsame() }
}

class C is P {
 method m($x) { 'c-' ~ callsame() }
}

say C.m(42); # c-p-gp-42

Record phase 1. Guards that the next resumption
is the expected one

2. Guards on callsite shape
3. Guards on dispatch state
4. Obtains init arguments
5. Runs the target method

0 10 20 30 40 50 60

call-monitor-method

callsame-method

invoking-nontrivial-proto

multi-with-where

new-buf

Time to run benchmark in seconds (smaller is better)

Legacy

new-disp

A big improvement

No silver bullet

Moved from caching at "destinations" to
caching at the callsite

Better for the monomorphic majority,
let us deal with resumable dispatches

Much worse for megamorphic sites

No silver bullet

Moved from caching at "destinations" to
caching at the callsite

Better for the monomorphic majority,
let us deal with resumable dispatches

Much worse for megamorphic sites

Can easily do 20x worse!

Doing better (a WIP)

Expose callsite size to dispatchers

Once it reaches a certain size, switch
strategy (for example, method hash)

Try latest dispatch program first (to

immediately hit megamorphic strategy)

Also: longer warm-up

Setup work at every callsite now

Dispatchers are themselves optimized
and JIT-compiled - but only after they

have warmed up too

Can we somehow safely cache the work
or "prime" the callsites at compile time?

In closing...

MoarVM has been more
about trying to apply existing

ideas than creating new
approaches to VM design

(Although the resumable dispatch handling

is something I didn't see elsewhere yet.)

Demonstrated that one can
transition a "traditional" dynlang
implementation to a modern one

in an incremental manner?

Maybe. But many caveats.
(Clean compiler/VM separation. FFI rather than C
extension API. Small user base when we started.)

Thank you!
Questions?

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

