
Reflections on a decade
 of MoarVM

A runtime for the Raku programming language

Jonathan Worthington
Edument

MoarVM is...

A virtual machine

Built for the Raku programming
language (née Perl 6)

Developed by an open source

community

I am...

Co-founder and architect of MoarVM
Architect of the Rakudo compiler

Raku MOP & concurrency co-designer

Working at Edument, primarily on
developer tooling projects

(previously was mostly teaching)

Time flies

Nearly 10 years of development!

I've learned a lot about VMs.
Still got a lot left to learn.

The origins
of the MoarVM project

The early days of MoarVM
as a simple bytecode interpreter

How MoarVM advanced
to incorporate many of the VM "tricks of the trade"

The growing pains
that we experienced as MoarVM advanced

A new generalized dispatch mechanism
that's enabling us to do more with less

The origins
of the MoarVM project

How I got involved

Ran a small web development company
in my teens, used Perl a lot

At university, really enjoyed the courses

on compilers and languages

Wanted to explore that area and give
something back to the Perl community

Perl 6

Yes, I've already heard all the jokes

Yes, it was eventually released

Diverged from Perl 5 in many ways

Perl 6

Yes, I've already heard all the jokes

Yes, it was eventually released

Diverged from Perl 5 in many ways

It darn well
needed to!

Perl 6

Yes, I've already heard all the jokes

Yes, it was eventually released

Diverged from Perl 5 in many ways

but

It darn well
needed to!

Is this thing
even Perl?

Raku

Eventually renamed to Raku

I'll refer to the language as Raku
throughout this talk

What makes Raku
interesting* to
implement?

* As in "may you live in interesting times"

Dynamic language, but...

There are types, and they must be
enforced runtime at latest

Naive implementation?
Loads of runtime spent doing type checks!

my class IPGNode {
 has Function $.function is required;
 has ValueStateGraph :: LambdaNode $.lambda is rw;
 has IPGNode @.calls;
 method add - callee (IPGNode $node -- > Nil) {
 @!calls.push ($node);
 }
}

Operators are multis

Multiple dispatch very widely used,
including for nearly ever operator

=

Not much ad-hoc polymorphism...
...but demands that multiple dispatch is fast!

say $m * $x + $c;

say infix:<+> (infix:<*> ($m, $x), $c);

Arbitrary precision

The Int type is arbitrary precision
(also native int which is not)

4.2 is a Rat (rational number), not

floating point

*time at *time

EVAL (compile time at runtime)
but also

BEGIN (runtime at compile time)

Meta-programming

Meta-classes not just for introspection

Called by the compiler to construct types,
and at runtime to find methods, do type

checks, etc.

Can subclass built-in metaclasses or
define completely new ones

Grammars

Raku has a new "regex" syntax...that
scales up to decidedly irregular things

grammar JSON::Tiny::Grammar {
 token TOP { \ s* <value> \ s* }
 rule object { '{' ~ '}' < pairlist > }
 rule pairlist { <pair> * % \ , }
 rule pair { <string> ':' <value> }
 rule array { '[' ~ ']' < arraylist > }
 rule arraylist { <value> * % [\ ,] }
 ...
}

Raku eats itself

The Raku Language syntax is defined (and
parsed) using...a Raku grammar!

Can mix into the grammar to tweak the

language syntax

multi postfix:<!>(Int $n) {
 [*] 1..$n
}

Which means...

The compiler is just another Raku
program running atop of the VM

The Raku standard library is written in

Raku, with a means to call VM primitives

Sounds idyllic...

