ect Orientation,

| E i‘jl
r
[

>

s

YAPC::Europe 2008

Object Orientation, The Perl 6 Way

.WHO

Object Orientation, The Perl 6 Way
Originally from England..:

Object Orientation, The Perl 6 Way

Object Orientation, The Perl 6 Way

Object Orientation, The Perl 6 Way

Object Orientation, The Perl 6 Way

My Talks
 Giving two talks about Perl 6

. First talk (this one) is about object
orientation in Perl 6

« Second talk (right after this one) is about
the Perl 6 type system

. All code examples presented in the talk
today can be run in Rakudo (Perl 6
compiler for the Parrot Virtual Machine)

Object Orientation, The Perl 6 Way

Object Orientation, The Perl 6 Way

The class Keyword
.In Perl 5, we use package whether we

are writing a class or not

.In Perl 6, we differentiate them

.class = a class; can be instantiated
and has instance data

.role = re-usable unit of functionality
that can be composed into a class

.module = subs in a namespace

Object Orientation, The Perl 6 Way

Today's Examples
.|l love to travel

. Going to implement a simple system to
manage journeys, using the OO features
of Perl 6

o [0 start off with, we'll introduce classes
to represent places and journeys

class Place {

}

class Journey {

}

Object Orientation, The Perl 6 Way
Attributes With Accessors

«Use the has keyword to introduce
attributes

class Place {
has $.name;
has $.population is rw;

)
. The . twigil states an accessor method

should be generated

. he rw trait specifies that the accessor
method should return an lvalue

Object Orientation, The Perl 6 Way

Attributes With Accessors

.Can also use the ! twigil to declare a
private attribute

class Journey ({
has $.from;
has $.to;
has $!start time;
has $'end time;

)
- Even public attributes have $!'name

declared; it refers to the underlying
storage location

Object Orientation, The Perl 6 Way
Methods

. Differentiated from subs in Perl 6; use
the method keyword

«NoO need to list invocant in parameter list

method opinion () {
say "I luvs ma travelz.";

}

«Aside: Perl 6 has parameter lists, so you
can list the parameters taken, as In
many other languages. To cover it In
detail would take another 30 minutes...

Object Orientation, The Perl 6 Way
Some More Methods

- Methods that work with our private

attributes

method start () { S$!start time = time(); }
method end () { S'lend time = time(); }
method duration () {
if !S!start time {
die "Journey not started yet.";
} else {
return $'end time ?°?
Sl'lend time - S!start _time !!
time () - $!start_ time;

Object Orientation, The Perl 6 Way
Proto-Objects
.In Perl 6, there is no class object

.Instead, when you declare a class, a
proto-object in installed in the
namespace under the name of the class

«An "empty instance" of the class

. Can call any methods that do not
access the state

o This includes the new method

Object Orientation, The Perl 6 Way
Instantiation and Method Calls

« YOU can instantiate the class by calling
the new method

my S$city
my Strip

«Note the new syntax in Perl 6 for
method calls; we now use .

Place.new();
Journey.new () ;

. Can call the opinion method on the
iInstance:

Strip.opinion(); # I luvz ma travelz.
Strip.opinion; # same

Object Orientation, The Perl 6 Way

Initializing Attributes
. Pass named parameters 10 new

my S$Slhasa = Place.new (
name => 'Lhasa',
population => 257400

) ;

my $xian = Place.new (
name => 'Xian',
population => 2670000

) ;

my $trip = Journey.new (
from => S$lhasa,
to => Sxian

) ;

Object Orientation, The Perl 6 Way
Inheritance

. There's More Than One Way To Travel
-Make subclasses of Journey for them

class TrainJdourney is Journey {
has $.train_no;
has $.coach;
has S$S.place;
}
class Flight is Journey {
has $.flight_no;
}

class Walk is Journey {

}

Object Orientation, The Perl 6 Way

Initializing Parent Attributes
. [0 Initialize the attributes of a parent
class, need slightly different syntax

my $trip = TrainJourney.new (
Journey{ from => $lhasa, to => $xian },
train no => 'T28',
coach => '12'",
place => '68'

) ;
. YOU may find this messy; in that case
you are free to define your own new

method that does what you like

Object Orientation, The Perl 6 Way
Auto-vivification

« Doing hash-like indexing into a proto-
object actually returns a copy of the
proto-object with an auto-vivification
closure attached

my $from _home = Journey({
from => Sbratislava
};
my S$Sto_yapc = S$from _home.new (
to => $copenhagen
) ;
say $to_yapc.from.name; # Bratislava
say Sto_yapc.to.name; # Copenhagen

Object Orientation, The Perl 6 Way

Delegation

- We might like to have from_name and
to_name methods on our Journey class

. They just call the name method on the
Place class

.Use handles to generate them

class Journey ({
has $.from handles :from name<name>;
has $.to handles :to_name<name>;
...rest of the class...

Object Orientation, The Perl 6 Way

Delegation

 The handles trait verb doesn't just take a
pair, but can also take

. A single string, to delegate one
method and not change the name

. A list of strings and pairs to delegate
without or with name changes (can
mix them together in one list)

« More things not yet implemented
(including regex/substitutions)

Object Orientation, The Perl 6 Way

Object Orientation, The Perl 6 Way
Pollution

- We want to add pollution tracking
functionality into our journeys

ERIGIENVIROMENTAISFAIL

Object Orientation, The Perl 6 Way
Pollution

-Only want to apply it to some classes

A Flight and Traindourney will pollute,
but a Walk will not

. We'd also like to be able to re-use the
functionality of calculating pollution on
other things that are not Journeys

Object Orientation, The Perl 6 Way

Introducing Roles
. Allow us to implement a piece of
functionality (methods and attributes)
that can be composed into a class

. Composition is flattening

. Conflicts between methods of the
same name from different roles will be
flagged up at compile time

.Class gets last say in resolving the
conflict

Object Orientation, The Perl 6 Way
Introducing Roles

. Implement a role with two attributes and

a method

role Pollute {
has $.carbon_per_unit;
has $.unit;
method carbon_footprint (Sunits) ({
return $units * $!carbon_per unit;

}
}

. Attributes declared with has as if they
were declared in the class

Object Orientation, The Perl 6 Way
Composing Roles

« We compose roles into classes using
the does keyword

class TrainJourney is Journey does Pollute {
has $.train_no;
has $.coach;
has S$.place;
}
class Flight is Journey does Pollute {
has $.flight_no;
}

. Use multiple does before each role
name to compose many roles

Object Orientation, The Perl 6 Way
Roles As Mix-ins

«As well as composing roles at compile
time, we can also treat them as mix-ins
at runtime

. This derives a new anonymous class
containing the methods and attributes
provided by the role

« Note: methods in mixed-in role override
those In the class; no collision detection
here

Object Orientation, The Perl 6 Way
Roles As Mix-ins

. Useful for adding on extra things that we
weren't expecting...

Object Orientation, The Perl 6 Way
Roles As Mix-ins

. Useful for adding on extra things that we
weren't expecting...

I|ke delays

E_S \msl(; nms SONT

Object Orientation, The Perl 6 Way
Roles As Mix-ins

role Delay {
has $.duration is rw;
method opinion () ({
if $.duration <= 5 {
say "I luvs ma travelz.";
} elsif $.duration < 30 {
say "It's fine.";
} elsif $.duration < 60 {
say '"*sigh*";
} else {
say "AAAARRRRRRGGGGHHHH!!!";

}

Object Orientation, The Perl 6 Way

Roles As Mix-ins

« We use the does infix operator to mix a
role in at runtime

$Sjourney does Delay;
S$journey.duration = 70;
$journey.opinion; # AAAARRRRRRGGGGHHHH!!!

. If we have just one attribute, we have
some special syntax to initialize it in one

go (it's not actually a sub call)

$journey does Delay (40);
$journey.opinion; # *sigh*

Object Orientation, The Perl 6 Way

Enumerations

Object Orientation, The Perl 6 Way
Enumerations

. The enum keyword allows you to
introduce an enumeration type
enum Purpose <BusinessTrip Vacation>;
By default, the values map to Int values
starting at O

say BusinessTrip; # O
say Vacation; # 1

«But you can use strings too...

enum Phonetic [:Alpha<A>, Bravo, Charlie,
Delta, Echo, ..., Zulu];

Object Orientation, The Perl 6 Way
Enumerations

« YOU can use an enumeration as a role

and mix in into an existing object
Sjourney does Purpose (Vacation);

. Additionally, there is the but operator,
which makes a copy of the value and
then operates on that; it also knows how
to generalize an enum value to it's type

sub make_vacation (Strip) {
return S$trip but Vacation;

}

Object Orientation, The Perl 6 Way
Enumerations

. After mixing in with the but or does
operator, you get a method of the same
name as the enum, returning the current
value

Sjourney does Purpose (BusinessTrip);
say Sjourney.Purpose; # O

«As well as methods for each of
members of the enum returning a Bool

say Sjourney.BusinessTrip; # 1
say Sjourney.Vacation; # 0

Object Orientation, The Perl 6 Way

Other Bits In
Rakudo

Object Orientation, The Perl 6 Way

Meta-classes (incomplete)

« Each class has a meta-class, which can

be retrieved using the .HOW macro
my Smeta = Strip.HOW;

« Will provide a way to get a list of
methods, attributes, parents and roles
that a class does

.Use .M to call methods on meta-class

Strip.HOW.methods ($trip);
Strip.”methods(); # same

my (@methods
my (@methdos

Object Orientation, The Perl 6 Way
Calling Sets Of Methods

«Not sure If a class has a method, and
don't want an exception, but an undef
back instead?

$fp = S$trip.?carbon_footprint ($kms) // O;

«Can also use .* to call all methods of the
name (including those in super-classes)
and .+ to enforce that at least one
method will be called

my (@captures = Strip.+opinion;

Object Orientation, The Perl 6 Way
More Attribute Stuff

.| showed role attributes declared with
has, which are as if they were declared
In the class

« YOU can also declare role-private
attributes, invisible inside the class
my $!guts;
« [Nere are also class attributes —
essentially lexicals with accessors

my (@.instances;

Object Orientation, The Perl 6 Way

Rakudo OO

Implementation
Status

Object Orientation, The Perl 6 Way

Probably Not Half Way Yet

«Much progress has been made in
implementing the features shown today

. However, the Perl 6 object model is
pretty rich, so there's probably about this
much again worth of work to get the rest
of the features In

.Once we've got those features in, there
will also be some work to do on feature
interaction and edge cases

Object Orientation, The Perl 6 Way

Still Lots To Play With

« With many of the common things
iImplemented, there's plenty to play with
today

- Downloading and building Rakudo,
playing with it, breaking it and reporting
bugs helps

«Sending in a test case we can add to the
specification tests helps even more ;-)

Object Orientation, The Perl 6 Way

Thank You

Object Orientation, The Perl 6 Way

Questions?

