
Rakudo Evolved
Speed, feedback and hackability

Jonathan Worthington

OH HAI

I’m Jonathan.

Or jnthn.

I like...

Living in European countries whose names
start with an “s”

I like...

Hiking in the mountains

I like...

Cold weather

I like...

Good beer

I like...

Type systems

I like...

Meta-object protocols

I like...

Perl 6

Around a year ago...

Rakudo *

First distribution release of Rakudo Perl 6

Not just the compiler, but modules and a
Perl 6 book included too

Aimed at getting more people to try Perl 6,
thus giving us more feedback, contributors,

modules, etc.

Rakudo * - The Good

Lots of features

Development helped clarify many aspects
of the Perl 6 specification

(Go to pmichaud’s talk on lists for an example)

Drew more people into the Perl 6
community and got us more feedback

Rakudo * - The Bad

Rather Slow

Quite memory hungry

Weak in areas of language extensibility,
such as meta-programming

Very constrained BEGIN time

Finding A Way
Forward

Some Ways Being Fast Is Hard

A literal implementation of some features is
slow (e.g. operators are multi-subs)

Can be very dynamic, which limits how
much we can statically know

Even when we do have plenty of type
information, user-defined meta-objects

may be implementing those types

Some Ways Being Fast Is Possible

Always know what multis are in scope, so
can often decide and inline things at

compile time

Sometimes a guess is enough, provided we
can handle having guessed wrong too

Require/enable user-defined meta-objects
to provide what the optimizer needs

Typical Compilation Process

Source Code Tree Tree Low Level Code

A clean, well understood approach – but for
Perl 6, we’d hit its limits

Looking Deeper

A compiler always needs to build a model of
the things that it is compiling, from classes

all the way down to individual variables

Used for semantic analysis and optimization

In Perl 6, the programmer has a huge
degree of control over the elements we’re

building the model out of

Blurring Boundaries

Needed to (mostly) let go of the boundary
between runtime and compile time

The model we’d build at compile time
would thus contain the very same objects

that will be used at runtime

Those objects may well be user defined

Something More Like...

Source Code Tree
+

Model

Tree
+

Model

Low Level Code
+

Model

Classes

VariablesLexpads

Subs Parameters

Consequences

Much complexity disappears from the
compiler and into the model objects

Boundary between user-defined and built-
in objects in the model removed

Semantic analysis and optimization have
very rich and automatically accurate model

of the program to work with

The Other
Big Problem

Parrot’s Object Model

Committed to too much  inflexible

Committed to too little  slow

No native type support

Poor base for meta-programming, and
decidedly on the runtime side of the fence

For Perl 6 We Need...

Meta-programming
(So developers can tweak and extend the language)

Gradual typing
(Use type information well - but don’t require it)

Representation polymorphism
(There’s more than one way to store it in memory)

Meta-objects available at compile time
(So that we can use them in analysis and optimization)

Finding the
heart of OO

and types

Easy Yet Deep Questions

What is an object?

What is a type?

How are the two related?

The Operational View

Definitions of OO seem to have certain
operational “hot-paths” in common:

Object allocation

State access (e.g. attribute lookup/binding)

Some form of dispatch (methods, messages,
generic function application...)

The Operational View

With types there’s really only one key
operation:

Type membership checking

(Slight complication: sometimes only the thing
we’re checking against knows the answer,

sometimes only the type knows the answer)

OO Primitives

Really, objects just have...

Some state
(A chunk of memory we can stick stuff in)

Some semantics
(Described by a meta-object)

Membership of one or more types
(Either the object knows it, or the type knows it)

Things That Needn’t Be Primitive

Inheritance

Roles and flattening composition

Parametric types

Refinement types

Hopefully, things we didn’t invent yet 

6model

An Object Framework

Small core from which a rich set of meta-
objects can be grown

Pays attention to how to make the common
operational things fast

A little support for smudging the compile
time – runtime boundary

An Object

Has a pointer to a shared table (“s-table”)

Has a pointer to a serialization context

6model stops caring beyond that point

Object

S-Table

Serialization Context

Under control of REPR

An S-Table

Essentially, one of these per type (really, per
pairing of meta-object and representation)

Meta-object is just another object – nothing
more special than that

S-Table

HOW (Meta-object)

REPR Function Table

REPR Data Store

Various Caches

Representations

Low level – partly serve as the binding to
the underlying virtual machine

REPRs have functions that may deal with...
Object memory allocation

Attribute storage
Boxing/unboxing to native types

GC integration
Storage aspects of type changes

Meta-objects

Objects that describe the semantics of
other objects

How are method calls on the object
dispatched?

What types is the object a member of?

And much, more more...

Growing a MOP

What’s in the MOP?

Tend to have a meta-object for each sort of
type in the language

ClassHOW

GrammarHOW

ParametricRoleHOW

ConcreteRoleHOW

SubsetHOW

EnumHOW

Factoring With Roles

Many meta-objects have things in common,
and get most of their functionality by

composing roles

MethodContainer

MultipleInheritance

C3MRO

Trusting

Versioning

User Defined Meta-objects

Tweak an existing one by subclassing

Create a new one from scratch, and maybe
compose some of the provided roles so you

needn’t implement so much

A combination of the two approaches can
sometimes be useful

Archetypes

A way for a meta-object to describe the
sorts of ways it can be used, and how it can

produce other related types

nominal

nominalizable

inheritable

inheritalizable

generic

Meta-programming
Example

Goal

Write a very basic implementation of
method modifiers

use MethodModifiers;

class C {

method m() is before { say "before"; }

method m() { say "in the method"; }

method m() is after { say "after"; }

}

C.m;

Trait Handlers

To support the before and after traits, we
add and export a couple of trait handlers

Called at compile time, and before the
method is added to the class

multi trait_mod:<is>(Method $m, :$before!) is export {

apply_modifier($m, 'before');

}

multi trait_mod:<is>(Method $m, :$after!) is export {

apply_modifier($m, 'after');

}

Attaching The Modifier

Applying a modifier just mixes in a role to
the method to store the name of it

sub apply_modifier($m, $mod) {

if $m.?modifier -> $cur_mod {

die "'$m.name()' already has modifier $cur_mod"

}

$m does role {

has $.modifier;

method set_modifier($mod) {

$!modifier := $mod;

}

};

$m.set_modifier($mod);

}

Subclassing ClassHOW

For this example, we’ll just subclass
ClassHOW (default class implementation)

More flexible would have been to define it
as a role, or at least provide it as one so it
can be combined with other extensions

my class ClassWithMethodModifiers

is Metamodel::ClassHOW is Mu {

...

}

Storing Modified Methods

We override add_method and have it stash
away any methods with modifiers

has %!modified_methods;

method add_method(Mu $obj, $name, $meth) {

if $meth.?modifier -> $mod {

%!modified_methods{$name} //= [];

%!modified_methods{$name}.push($meth);

}

else {

callsame;

}

}

Method Table Computation

Fiddle with method table computation

method method_table($obj) {

my %meth_table = callsame;

for %!modified_methods.kv -> $name, @mods {

unless %meth_table.exists($name) {

die "Modified '$name‘ has no normal method";

}

my %mod_map = @mods.classify: { .modifier };

my $normal = %meth_table{$name};

%meth_table{$name} = make_disp(%mod_map, $normal);

}

%meth_table

}

Method Table Computation

make_disp just creates a closure that
does the dispatching as needed

sub make_disp(%mod_map, $normal) {

-> $obj, *@pos, *%named {

for %mod_map<before>.list {

$obj.$_(|@pos, |%named);

}

my $res := $obj.$normal(|@pos, |%named);

for %mod_map<after>.list {

$obj.$_(|@pos, |%named);

}

$res;

}

}

And Finally...

We export it as the default HOW to use for
classes anywhere that uses the module

Note that we neglected to handle
inheritance and didn’t fix up introspection
to include the modifying methods, which a

full implementation would require

my module EXPORTHOW { }

EXPORTHOW.WHO.<class> = ClassWithMethodModifiers;

Status

Rakudo Using 6model

Rakudo has been extensively refactored to
use 6model

We now build meta-objects at compile time
and use them at runtime

Vastly better (though not yet complete)
BEGIN support and meta-programming

Speed Improvements

Depends heavily on the benchmark

Startup time is about the same for now

Runtime improved (for example a
Mandelbrot benchmark ran 4-5x faster)

This is just switching to 6model – we’ve
barely started to really exploit it yet

Regressions?

Inevitably there will be some regressions in
such a major refactor

Thankfully, we have a large test suite, and
modules have tests too

Not as drastic as alpha  ng, which was
essentially a re-write; this time we kept the

grammar and actions for the most part

Portability

Perl 6 should run everywhere – not just on
every platform, but on every VM

We’ve eliminated just about all of the PIR
from the codebase in the process of this

refactoring

Big win for our future porting efforts

Rakudo Roadmap

Serialization

At the moment, we retain the sequence of
“events” that occurred during compilation

and use them to re-construct the
environment in pre-compiled code

In the next couple of months, we’ll switch
to serializing the environment instead

Big startup win expected, fixes BEGIN

Optimizers

We’ll also be starting work on optimizers in
the next couple of months

Optimizer for Rakudo will aim to improve
the performance of Perl 6 code

Also need an optimizer for NQP (which
much of the compiler is written in)

Compile-time Multi Dispatch

We now have sufficient understanding of
the multi-candidates in a given lexical scope

at compile time to start making dispatch
choices then

Need more tracking of type information
within the program

Should give us a modest win

Multi-sub Inlining

Once we know what code we’re calling, we
can go a step further: inline it

Need cross-compilation unit inlining (or we
can’t inline operators from the setting)

This is where we get big wins – not to
mention that it opens the door to further

optimizations on the flattened code

Method inlining?

Difficult because method calls are late
bound, and everything in Perl 6 is virtual

There’s still hope! We can guess. 

Just need to re-check at runtime that the
inline was indeed OK, and be able to

“undo” it if not

Native Types et al

We’ve started work on these, though we
really need the inlining for them to shine

Also need to implement packed arrays and
compact structs

Then there’s the other bits of S09...

And much more...

The goal remains to deliver a Perl 6
implementation that’s stable, performant

and that you’ll love using

The last year has seen many exciting
developments

The next few releases will bring a great deal
more improvements

Thank You!

Questions?

Blog: http://6guts.wordpress.com/
Twitter: jnthnwrthngtn
Email: jnthn@jnthn.net

