
Perl 6 Performance
Update

Jonathan Worthington | Edument

The challenge
of running Perl 6 fast

The optimizations
we're performing to rise to them

The results
of various benchmarks

The consequences
for those writing Perl 6 programs today

The plans
for further improvement

The challenge
of running Perl 6 fast

Compiler implemented in Perl 6

Built-ins implemented in Perl 6

Only "native" code is the VM
(MoarVM is written in C)

So to make Perl 6 fast, we must…

So to make Perl 6 fast, we must…

…make Perl 6 fast!

Perl 6 is very object-y

Objects 

 Gather together related data and
functionality

 Let us work at a higher level of
abstraction

 Provide polymorphism

Lots of simple things in
Perl 6 are objects

Boxes
Int
Num
Str

Numeric-ish
Complex
Date

DateTime
Rat

Range Containers
Scalar
Array
Hash

Objects 

− Cost of method resolution
− Allocations mean more memory

pressure and more time doing
garbage collection

− Harder to analyze/optimize the
program

for @values -> $v {
 # Allocate a Scalar $sv
 # sin returns a boxed Num
 my $sv = $v.sin;
 # + returns a boxed Num
 do-something(1e0 + $sv);
}

Objects are allocated in the GC
nursery: a big blob of memory

When it's full, we garbage collect

Scalar Num Num Scalar Num Num

Next
allocation

here

Obvious consequence:
The quicker we fill the nursery, the

more often we have to do GC, and so
the more time we spend on GC

Less obvious consequence:

Objects are spread through memory,
so we get lots of CPU cache misses

Perl 6 has types…

…and we often enforce the
type constraints at runtime

sub shorten(Str $s, Int $chars) {
 $s.chars < $chars
 ?? $s
 !! $s.substr(0, $chars) ~ '...'
}

sub shorten(Str $s, Int $chars) {
 $s.chars < $chars
 ?? $s
 !! $s.substr(0, $chars) ~ '...'
}

multi infix:<< < >>(Int $a, Int $b) {
 …
}

sub shorten(Str $s, Int $chars) {
 $s.chars < $chars
 ?? $s
 !! $s.substr(0, $chars) ~ '...'
}

method substr(Int $from, Int $chars) {
 ...
}

sub shorten(Str $s, Int $chars) {
 $s.chars < $chars
 ?? $s
 !! $s.substr(0, $chars) ~ '...'
}

multi infix:<~>(Str $a, Str $b) {
 ...
}

Most operators are multi subs

Array and hash access are a call
to a multi sub that in turn

performs a method call

What if we were to try doing it
that way in Perl 5?

my $arr = [1,2,3];
my $total = 0;
for (1..10_000_000) {
 $total += $total + $arr->[1] + $arr->[2];
}
print "$total\n";

0.509s

sub at_pos {
 @_[0]->[@_[1]]
}

sub postcircumfix {
 at_pos(@_[0], @_[1])
}

my $arr = [1,2,3];
my $total = 0;
for (1..10_000_000) {
 $total += $total + postcircumfix($arr, 1) +
 postcircumfix($arr, 2);
}
print "$total\n";

8.39s

sub at_pos {
 @_[0]->[@_[1]]
}

sub postcircumfix {
 at_pos(@_[0], @_[1])
}

sub infix_plus {
 @_[0] + @_[1]
}

my $arr = [1,2,3];
my $total = 0;
for (1..10_000_000) {
 $total = infix_plus($total,
 infix_plus(postcircumfix($arr, 1),
 postcircumfix($arr, 2)));
}
print "$total\n";

11.48s

Except we didn't actually do any
multi-dispatch…

Except we didn't actually do any
multi-dispatch…

And in Perl 6, Int is an object…

Except we didn't actually do any
multi-dispatch…

And in Perl 6, Int is an object…

And Int automatically upgrades

to a big integer too…

Except we didn't actually do any
multi-dispatch…

And in Perl 6, Int is an object…

And Int automatically upgrades

to a big integer too…

And Perl 6 arrays support laziness!

my @arr = 1,2,3;
my $total = 0;
for ^10_000_000 {
 $total += @arr[1] + @arr[2];
}
say $total;

So what about Perl 6?

Christmas release:

10.3s

Christmas release:

10.3s
Faster than the Perl 5

"translation"

Today:

0.886s

Today:

0.886s
Within 1.7x of Perl 5,

despite all of the extra
abstraction and work

Today:

0.886s
Which 1.7x of Perl 5,

despite all of the extra
abstraction and work

And a bit faster than
the same benchmark

in Python

Of course, nobody wants to know
why it's challenging to go fast.

They just want it to be fast.

So, that's what we're doing.

The optimizations
we're performing to rise

to the challenges

Programs that we want to
develop and maintain

Programs that we want the
computer to run

Optimizer

Static optimizer in Rakudo

Dynamic optimizer in MoarVM

Static Optimizations

Rewrites AST into faster constructs

Inlining of native operators

Lexical to local lowering

The static optimizer is…

Mostly doing local transforms

Sticking to cheap analyses, because it
doesn't know what's worth a more

sophisticated analysis

The dynamic optimizer is
responsible for the

big
improvements

On the array access
benchmark, it gives a

30x
speedup

How?

Bytecode

Intepreter

Stuff
happens!

Bytecode

Intepreter

Stuff
happens!

Execution Log

Bytecode

Intepreter

Stuff
happens!

Execution Log

This parameter is
an Int

Bytecode

Intepreter

Stuff
happens!

Execution Log

We did an
iteration of this

loop

Bytecode

Intepreter

Stuff
happens!

Execution Log

Here, we called
method foo

Bytecode

Intepreter

Stuff
happens!

Execution Log

The method call
returned a Bool

Meanwhile, on
another thread…

Oooh, a log packed full
of statistics!

Stack Simulation

Execution Log

Aggregated /
linked statistics

Stack Simulation

Execution Log

Aggregated /
linked statistics

This loop did
100 iterations

Stack Simulation

Execution Log

Aggregated /
linked statistics

This sub was
called 55 times

Stack Simulation

Execution Log

Aggregated /
linked statistics

This call
returns Int

120 times and
Nil 1 time

Planner

Optimization
plan

Aggregated /
linked statistics

Planner

Optimization
plan

Aggregated /
linked statistics

Optimize
infix:<+> for

(Int, Int)

Planner

Optimization
plan

Aggregated /
linked statistics

Optimize
AT-POS for
(Array, Int)

Bytecode isn't suitable for
efficient program analysis

So, we parse it into a more

suitable data structure

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Loop Conditional

Control Flow Graph

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Dominance tree

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

Dominance tree

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Dominance tree

Block Immediately
Dominates

BB1 BB2

BB2 BB3, BB4, BB5

BB3

BB4

BB5 BB6

BB6

BB 1

BB 2

BB 3 BB 4 BB 5

BB 6

SSA Form

param_rp_i r0, liti16(0)
param_rp_i r1, liti16(1)
mul_i r0, r0, r0
add_i r0, r0, r1
return_i r0

SSA Form

param_rp_i r0(1), liti16(0)
param_rp_i r1, liti16(1)
mul_i r0, r0, r0
add_i r0, r0, r1
return_i r0

SSA Form

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0, r0, r0
add_i r0, r0, r1
return_i r0

SSA Form

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0, r0, r1
return_i r0

SSA Form

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0(3), r0(2), r1(1)
return_i r0

SSA Form

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0(3), r0(2), r1(1)
return_i r0(3)

SSA Form

param_rp_i r0(1), liti16(0)
param_rp_i r1(1), liti16(1)
mul_i r0(2), r0(1), r0(1)
add_i r0(3), r0(2), r1(1)
return_i r0(3)

(Plus some mechanism to deal with branches.
The dominance calculation helps there.)

We associate

facts

with each SSA variable

But statistics aren't
facts, they're just

statistics!

So, we insert

guards
that deoptimize if the type

isn't what was predicted

Finally, we're ready to go
ahead and apply lots of

optimizations!

Rewrite a method lookup
into a constant, because we

know the precise type

Rewrite a multi-dispatch
into a direct call to the

correct candidate

Rewrite a call to the general
code into a call to the

applicable specialization

For small callees, inline the
callee's code into that of

the caller

Eliminate duplicate type
checks that are already
proven by existing facts

Eliminate guards when we
can do a proof that its
condition will be met

Eliminate conditionals
when we can prove which

way they will go

Rewrite attribute access
into simple, unchecked,

pointer dereferences

We also recently got

escape analysis

Replace object allocations with a
register per attribute

Eliminate, sink, or defer the

object allocation

Do type proofs that look into
objects  eliminate more guards!

BB 1

BB 2

BB 3 BB 4

BB 5

BB 6

Get an optimized graph…

BB 1

BB 2

BB 4

BB 5

BB 6

…and generate optimized code

BB 1

BB 2

BB 4

BB 5

BB 6

Quickened
bytecode

…and, on x64, machine code

BB 1

BB 2

BB 4

BB 5

BB 6

Machine
code

The results
of various benchmarks

Disclaimer

There's lies, statistics, and
benchmarks 

Some of these numbers rely on EA-

based optimizations not yet
available in a default build

No tricks

I tried to write the kind of code a
typical programmer would write,

not use every Perl 6 trick I know to
squeeze out more speed.

Compared to the
Christmas release, today's
Rakudo and MoarVM are

much faster!

Benchmark Xmas Today Improvement
Read a million lines (UTF-8) 3.217 0.508 6.33

Array reading and addition 10.214 0.875 11.67

Hash reading 17.357 0.862 20.14

Hash store 40.134 2.247 17.86

Complex 11.092 0.695 15.96

Short-lived point object 21.174 0.369 57.38

Parse 10,000 docker files 23.964 6.145 3.9

Million native calls 4.727 0.898 5.26

But what about
compared to Perl 5,

Python, or Ruby?

Not a competition to see which is fastest,
but rather to see if Perl 6 is competitive.

Some results are already
looking fairly decent…

class Point {
 has $.x;
 has $.y;
}
my $total = 0;
for ^1_000_000 {
 my $p = Point.new(x => 2, y => 3);
 $total = $total + $p.x + $p.y;
}
say $total;

Basic object operations on a
short-lived object

Basic object operations on a
short-lived object

Language Time Perl 6 is...
Perl 6 0.385 -
Perl 5 0.955 2.48x faster
Python 0.351 1.10x slower
Ruby 0.191 2.02x slower

Basic object operations on a
short-lived object

Language Time Perl 6 is...
Perl 6 0.385 -
Perl 5 0.955 2.48x faster
Python 0.351 1.10x slower
Ruby 0.191 2.02x slower

Non-Perls use positional
parameters in the

constructor…

Basic object operations on a
short-lived object

Language Time Perl 6 is...
Perl 6 0.385 -
Perl 5 0.955 2.48x faster
Python 0.351 1.10x slower
Ruby 0.191 2.02x slower

…so we need to EA away
the temporary hash to

compete with them

Read a million lines of UTF-8
(checking it) and count the chars

my $fh = open "longfile";
my $chars = 0;
for $fh.lines {
 $chars = $chars + .chars
}
$fh.close;
say $chars

Read a million lines of UTF-8
(checking it) and count the chars

Language Time Perl 6 is...
Perl 6 0.509 -
Perl 5 0.977 1.92x faster
Python 2.207 4.34x faster
Ruby 0.412 1.24x slower

Read a million lines of UTF-8
(checking it) and count the chars

Language Time Perl 6 is...
Perl 6 0.509 -
Perl 5 0.977 1.92x faster
Python 2.207 4.34x faster
Ruby 0.412 1.24x slower

Perl 6, unlike the others,
has grapheme-level strings.

Integer math (allowing use of
Perl 6 native int)

sub gcd(int $a is copy, int $b is copy) {
 while $b ≠ 0 {
 my int $t = $b;
 $b = $a % $b;
 $a = $t;
 }
 $a
}
for ^2_000_000 {
 die "oops" unless gcd(40, 30) == 10;
}

Integer math (allowing use of
Perl 6 native int)

Language Time Perl 6 is...
Perl 6 0.664 -
Perl 5 0.884 1.33x faster
Python 0.406 1.63x slower

Ruby 2.69 4.05x faster

Integer math (allowing use of
Perl 6 native int)

Language Time Perl 6 is...
Perl 6 0.664 -
Perl 5 0.884 1.33x faster
Python 0.406 1.63x slower

Ruby 2.69 4.05x faster

With JIT, we should really
sweep the floor with this

one. Alas, not yet.

Some simple operations using
complex numbers

my $total-re = 0e0;
for ^2_000_000 {
 my $x = 5 + 2i;
 my $y = 10 + 3i;
 my $z = $x * $x + $y;
 $total-re = $total-re + $z.re
}
say $total-re;

Some simple operations using
complex numbers

Language Time Perl 6 is...
Perl 6 0.175 -
Perl 5 40.1 229x faster
Python 1.16 6.61x faster
Ruby 1.52 8.68x faster

Some simple operations using
complex numbers

Language Time Perl 6 is...
Perl 6 0.175 -
Perl 5 40.1 229x faster
Python 1.16 6.61x faster
Ruby 1.52 8.68x faster

Hmmm. Obtained using
Math::Complex. It's built-in

for other languages.

Some simple operations using
complex numbers

Language Time Perl 6 is...
Perl 6 0.175 -
Perl 5 40.1 229x faster
Python 1.16 6.61x faster
Ruby 1.52 8.68x faster

EA allows us to totally
eliminate the temporary

Complex objects

Really need to do better
at arrays and hashes…

Reading from an array, plus basic
integer math

my @arr = 1,2,3;
my $total = 0;
for ^10_000_000 {
 $total += @arr[1] + @arr[2];
}
say $total;

Reading from an array, plus basic
integer math

Language Time Perl 6 is...
Perl 6 0.886 -
Perl 5 0.514 1.72x slower

Python 1.00 1.13x faster
Ruby 0.509 1.74x slower

Lots of assignments into a
dynamically allocated array

for ^10_000 {
 my @arr;
 for ^1_000 {
 @arr[$_] = 42;
 }
}

Lots of assignments into a
dynamically allocated array

Language Time Perl 6 is...
Perl 6 0.734 -
Perl 5 0.527 1.40x slower
Python 0.624 1.18x slower
Ruby 0.505 1.46x slower

Lots of assignments into a
dynamically allocated array

Language Time Perl 6 is...
Perl 6 0.734 -
Perl 5 0.527 1.40x slower
Python 0.624 1.18x slower
Ruby 0.505 1.46x slower

Every array slot is a
Scalar, which we have to

allocate.

Lots of assignments into a
dynamically allocated array

Language Time Perl 6 is...
Perl 6 0.734 -
Perl 5 0.527 1.40x slower
Python 0.624 1.18x slower
Ruby 0.505 1.46x slower

Plus, arrays may be lazy,
which creates a little extra

overhead too (for now).

Reading values from a hash and
basic integer math

my %h = a => 10, b => 12;
my $total = 0;
for ^10_000_000 {
 $total = $total + %h<a> + %h;
}

Reading values from a hash and
basic integer math

Language Time Perl 6 is...
Perl 6 0.886 -
Perl 5 0.787 1.12x slower
Python 1.15 1.30x faster
Ruby 0.597 1.48x slower

Set up lots of hashes with keys
obtained from an array

my @keys = 'a'..'z';
for ^500_000 {
 my %h;
 for @keys {
 %h{$_} = 42;
 }
}

Set up lots of hashes with keys
obtained from an array

Language Time Perl 6 is...
Perl 6 2.30 -
Perl 5 1.65 1.35x slower
Python 0.837 2.66x slower

Ruby 2.64 1.18x faster

Set up lots of hashes with keys
obtained from an array

Language Time Perl 6 is...
Perl 6 2.30 -
Perl 5 1.65 1.35x slower
Python 0.837 2.66x slower

Ruby 2.64 1.18x faster

The Perls certainly are
doing hash randomization -

but who else is?

Set up lots of hashes with keys
obtained from an array

Language Time Perl 6 is...
Perl 6 2.30 -
Perl 5 1.65 1.35x slower
Python 0.837 2.66x slower

Ruby 2.64 1.18x faster

Perl 6 is, as with arrays,
also doing a Scalar

allocation per element

And then some things
really need work…

Startup time - important for
scripting - is still unimpressive

Language Time Perl 6 is...
Perl 6 0.093 -
Perl 5 0.0047 19.9x slower

Python 0.011 8.40x slower

Ruby 0.038 2.47x slower

And please, let's not talk about
regex performance…

…oh well, OK, if we must…

my $i = 0;
for (1..10_000_000) {
 $i++ if "boo" =~ /^b/
}
say $i;

my $i = 0;
for ^10_000_000 {
 $i++ if "boo" ~~ /^b/
}
say $i;

Perl 5

Perl 6

my $i = 0;
for (1..10_000_000) {
 $i++ if "boo" =~ /^b/
}
say $i;

my $i = 0;
for ^10_000_000 {
 $i++ if "boo" ~~ /^b/
}
say $i;

Perl 5

Perl 6

1.60s

38.7s
(24x slower)

Rakudo doesn't yet know how to
avoid using the regex engine for

simple things - but Perl 5 seems to
be really rather good at that.

So what if we manually avoid it in
Perl 6, to see what we might be

able to achieve?

my $i = 0;
for (1..10_000_000) {
 $i++ if "boo" =~ /^b/
}
say $i;

my $i = 0;
for ^10_000_000 {
 $i++ if "boo".starts-with('b')
}
say $i;

Perl 5

Perl 6, using starts-with

my $i = 0;
for (1..10_000_000) {
 $i++ if "boo" =~ /^b/
}
say $i;

my $i = 0;
for ^10_000_000 {
 $i++ if "boo".starts-with('b')
}
say $i;

Perl 5

Perl 6, using starts-with

0.700
(2.2x faster)

1.60s

But still…even the case where we
do hit the regex engine (or use
grammars) needs to be faster.

The consequences
for those writing Perl 6

programs today

Inlining means that calling an
accessor is about as cheap as

accessing an attribute

And both of those are cheaper than
using a hash instead of an object

Similarly, small subs and methods
(and private methods) can be

inlined too, so don't worry much
over using those

Avoid regexes when a simple
method - like starts-with or
contains - will do the job

Some constructs are not yet well
optimized. There's usually more

than one way to do things, so - on
hot path code - experiment with

some other ways.

Slow things today include…

Destructuring (and signature unpacks)
Multi-dispatch with where clauses

Flattening into argument lists
Multi-dimensional arrays

(But if you're reading this in 2020 or later, check these

are still true, because things improve regularly. )

Assignment into an array or hash
copies into the target

Binding, carefully used, can turn

O(n) into O(1)

Some modules are notably faster
than others, so consider those too

Recently, got a roughly 5x speedup

by switching YAML module

And, of course, Perl 6 parallelism
support can be a great "get out of

jail free" card

The plans
for further performance

improvements

Well, obviously…

Optimize away use of regexes
where they aren't needed

And make the regex and grammar

implementation fast anyway

More EA

Current focus is getting the latest
round of work into user's hands

Beyond that, make EA understand
loops, and able to scalar replace

arrays and hashes

Speed up array/hash

Performance parity is within reach,
largely by squeezing more waste

out of the generated code

Speed up array/hash

To be notably faster than Perl 5 and
friends, we need to do more

Can delay or even avoid Scalar

allocation - if we can better convey
when we only need an r-value.

That's a tricky problem.

Region JIT?

Currently, MoarVM is a method JIT
with aggressive inlining

But our statistics model means we

could do region JIT, and it'd
probably be a win for us

Keep working at it

There's no shortcut to maturity

Need to continue analyzing things
that are slow, understanding why,

and finding solutions

The ultimate goal here, is
that performance joins

with the many other
reasons that one might

choose to use Perl 6

It's hard work.
It's challenging.

It's hard work.
It's challenging.

But it's in our grasp.

Questions?

@ jonathan@edument.cz

W jnthn.net

jnthnwrthngtn

jnthn

